These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7204164)

  • 1. Steady flow in a model of human central airways.
    Slutsky AS; Berdine GG; Drazen JM
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Sep; 49(3):417-23. PubMed ID: 7204164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady pressure-flow relationship in a cast of the upper and central human airways.
    Ben Jebria A; Tabka Z; Techoueyres P
    Int J Biomed Comput; 1987 Mar; 20(3):211-24. PubMed ID: 3583441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alveolar pressure-airflow characteristics in humans breathing air, He-O2, and SF6-O2.
    Slutsky AS; Drazen JM; O'Cain CF; Ingram RH
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Oct; 51(4):1033-7. PubMed ID: 7298416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evaluation of pressure drop for flows of air and heliox through upper and central conducting airway replicas of 4- to 8-year-old children.
    Paxman T; Noga M; Finlay WH; Martin AR
    J Biomech; 2019 Jan; 82():134-141. PubMed ID: 30522876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady and unsteady pressure-flow relationships in central airways.
    Isabey D; Chang HK
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Nov; 51(5):1338-48. PubMed ID: 7298472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillatory flow and quasi-steady behavior in a model of human central airways.
    Slutsky AS; Berdine GG; Drazen JM
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Jun; 50(6):1293-9. PubMed ID: 7263391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway.
    Kang MY; Hwang J; Lee JW
    J Biomech; 2011 Apr; 44(6):1196-9. PubMed ID: 21354574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of gas physical properties and flow on lower pulmonary resistance.
    Wood LD; Engel LA; Griffin P; Despas P; Macklem PT
    J Appl Physiol; 1976 Aug; 41(2):234-44. PubMed ID: 956107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas physical properties and respiratory system resistance measured by flow interruption.
    Abe T; Sato J; Romero P; Bates JH
    Respir Physiol; 1991 May; 84(2):159-70. PubMed ID: 1876757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deposition of particles in model airways.
    Johnston JR; Schroter RC
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Nov; 47(5):947-53. PubMed ID: 511719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of central airway resistance on frequency and tidal volume: a model study.
    Isabey D; Chang HK; Delpuech C; Harf A; Hatzfeld C
    J Appl Physiol (1985); 1986 Jul; 61(1):113-26. PubMed ID: 3733596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro validation of computational fluid dynamic simulation in human proximal airways with hyperpolarized 3He magnetic resonance phase-contrast velocimetry.
    de Rochefort L; Vial L; Fodil R; Maître X; Louis B; Isabey D; Caillibotte G; Thiriet M; Bittoun J; Durand E; Sbirlea-Apiou G
    J Appl Physiol (1985); 2007 May; 102(5):2012-23. PubMed ID: 17289906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Pressure-flow relationship in the airways (author's transl)].
    Isabey D; Chang HK
    Bull Eur Physiopathol Respir; 1982; 18(1):131-43. PubMed ID: 7053771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing flow partitioning in a model of the upper human lung airways.
    Bauer K; Chaves H; Brücker Ch
    J Biomech Eng; 2010 Mar; 132(3):031005. PubMed ID: 20459193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical modeling of steady inspiratory airflow through a three-generation model of the human central airways.
    Wilquem F; Degrez G
    J Biomech Eng; 1997 Feb; 119(1):59-65. PubMed ID: 9083850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure-flow relationships in a collaterally ventilating dog lung segment.
    Olson LE; Rodarte JR; Robinson NE
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Apr; 54(4):956-60. PubMed ID: 6853302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation between flow, curvilinearity, and density dependence of pulmonary pressure-flow curves.
    Lisboa C; Wood LD; Jardim J; Macklem PT
    J Appl Physiol Respir Environ Exerc Physiol; 1980 May; 48(5):878-85. PubMed ID: 7451298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of turbulent airflow using a CT based upper airway model of a racehorse.
    Rakesh V; Datta AK; Ducharme NG; Pease AP
    J Biomech Eng; 2008 Jun; 130(3):031011. PubMed ID: 18532860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure excursions during oscillatory flow in a branching network of tubes.
    Akhavan R; Kamm RD
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Sep; 57(3):665-73. PubMed ID: 6490456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of steady maximal expiratory flow within excised canine central airways.
    Solway J
    J Appl Physiol (1985); 1988 Apr; 64(4):1650-8. PubMed ID: 3378999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.