These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7204407)

  • 1. The effects of neutral salts on the stability of macromolecules. A new approach using a protein-ligand binding system.
    Damodaran S; Kinsella JE
    J Biol Chem; 1981 Apr; 256(7):3394-8. PubMed ID: 7204407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deterministic pressure-induced dissociation of vicilin, the 7S storage globulin from pea seeds: effects of pH and cosolvents on oligomer stability.
    Pedrosa C; Ferreira ST
    Biochemistry; 1994 Apr; 33(13):4046-55. PubMed ID: 8142407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model studies on the effects of neutral salts on the conformational stability of biological macromolecules. I. Ion binding to polyacrylamide and polystyrene columns.
    Von Hippel PH; Peticolas V; Schack L; Karlson L
    Biochemistry; 1973 Mar; 12(7):1256-64. PubMed ID: 4696753
    [No Abstract]   [Full Text] [Related]  

  • 4. Model studies on the effects of neutral salts on the conformational stability of biological macromolecules. 3. Solubility of fatty acid amides in ionic solutions.
    Hamabata A; Chang S; Von Hippel PH
    Biochemistry; 1973 Mar; 12(7):1271-8. PubMed ID: 4348830
    [No Abstract]   [Full Text] [Related]  

  • 5. Influence of protein conformation and selected Hofmeister salts on bovine serum albumin/lutein complex formation.
    Paiva PHC; Coelho YL; da Silva LHM; Pinto MS; Vidigal MCTR; Pires ACDS
    Food Chem; 2020 Feb; 305():125463. PubMed ID: 31520921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity coefficients of salts in highly concentrated protein solutions. II. Potassium salts in isoionic bovine serum albumin solutions.
    Reboiras MD; Pfister H; Pauly H
    Biophys Chem; 1986 Aug; 24(3):249-57. PubMed ID: 3768469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic studies on subunit assembly in human hemoglobin. Self-association of oxygenated chains (alphaSH and betaSH): determination of stoichiometries and equilibrium constants as a function of temperature.
    Valdes R; Ackers GK
    J Biol Chem; 1977 Jan; 252(1):74-81. PubMed ID: 833131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential interactions determine protein solubility in three-component solutions: the MgCl2 system.
    Arakawa T; Bhat R; Timasheff SN
    Biochemistry; 1990 Feb; 29(7):1914-23. PubMed ID: 2331471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model studies on the effects of neutral salts on the conformational stability of biological macromolecules. II. Effects of vicinal hydrophobic groups on the specificity of binding of ions to amide groups.
    Hamabata A; Von Hippel PH
    Biochemistry; 1973 Mar; 12(7):1264-71. PubMed ID: 4348829
    [No Abstract]   [Full Text] [Related]  

  • 10. Bile salts-bovine serum albumin binding: spectroscopic and thermodynamic studies.
    Pico GA; Houssier C
    Biochim Biophys Acta; 1989 Nov; 999(2):128-34. PubMed ID: 2597702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of salts on the subunit structure and dissociation of Lumbricus terrestris hemoglobin.
    Harrington JP; Herskovits TT
    Biochemistry; 1975 Nov; 14(22):4972-6. PubMed ID: 1182133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural stability of beta-lactoglobulin in the presence of kosmotropic salts. A kinetic and thermodynamic study.
    Kella NK; Kinsella JE
    Int J Pept Protein Res; 1988 Nov; 32(5):396-405. PubMed ID: 3209354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of "salt bridges" in membrane proteins.
    Honig BH; Hubbell WL
    Proc Natl Acad Sci U S A; 1984 Sep; 81(17):5412-6. PubMed ID: 6591197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct observation of salt effects on molecular interactions through explicit-solvent molecular dynamics simulations: differential effects on electrostatic and hydrophobic interactions and comparisons to Poisson-Boltzmann theory.
    Thomas AS; Elcock AH
    J Am Chem Soc; 2006 Jun; 128(24):7796-806. PubMed ID: 16771493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic analysis of the effect of concentrated salts on protein interaction with hydrophobic and polysaccharide columns.
    Arakawa T
    Arch Biochem Biophys; 1986 Jul; 248(1):101-5. PubMed ID: 3729409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetics of ligand binding to proteins.
    Weber G
    Adv Protein Chem; 1975; 29():1-83. PubMed ID: 1136898
    [No Abstract]   [Full Text] [Related]  

  • 17. Hydrophobic interaction adsorption of whey proteins: effect of temperature and salt concentration and thermodynamic analysis.
    Bonomo RC; Minim LA; Coimbra JS; Fontan RC; Mendes da Silva LH; Minim VP
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Nov; 844(1):6-14. PubMed ID: 16844436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational and thermodynamic characterization of the molten globule state occurring during unfolding of cytochromes-c by weak salt denaturants.
    Qureshi SH; Moza B; Yadav S; Ahmad F
    Biochemistry; 2003 Feb; 42(6):1684-95. PubMed ID: 12578383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct measurement of salt-bridge solvation energies using a peptide model system: implications for protein stability.
    Wimley WC; Gawrisch K; Creamer TP; White SH
    Proc Natl Acad Sci U S A; 1996 Apr; 93(7):2985-90. PubMed ID: 8610155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic interaction chromatography on uncharged Sepharose derivatives. Effects of neutral salts on the adsorption of proteins.
    Påhlman ; Rosengren J; Hjertén S
    J Chromatogr; 1977 Jan; 131():99-108. PubMed ID: 853109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.