These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7205575)

  • 1. Lipophilicity, molecular weight, and drug action: reexamination of parabolic and bilinear models.
    Lien EJ; Wang PH
    J Pharm Sci; 1980 Jun; 69(6):648-50. PubMed ID: 7205575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear dependence of biological activity on hydrophobic character: the bilinear model.
    Kubinyi H
    Farmaco Sci; 1979 Mar; 34(3):248-76. PubMed ID: 43264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs' lipophilicity and molecular weight.
    Camenisch G; Alsenz J; van de Waterbeemd H; Folkers G
    Eur J Pharm Sci; 1998 Oct; 6(4):317-24. PubMed ID: 9795088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative "in vitro" study of permeability with different synthetic and biological membranes.
    Díez-Sales O; Guzmán D; Cano D; Martín A; Sánchez E; Herráez M
    Eur J Drug Metab Pharmacokinet; 1991; Spec No 3():441-6. PubMed ID: 1820920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach.
    Winiwarter S; Bonham NM; Ax F; Hallberg A; Lennernäs H; Karlén A
    J Med Chem; 1998 Dec; 41(25):4939-49. PubMed ID: 9836611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polar interactions drug/phospholipids estimated by IAM-HPLC vs cultured cell line passage data: Their relationships and comparison of their effectiveness in predicting drug human intestinal absorption.
    Grumetto L; Russo G; Barbato F
    Int J Pharm; 2016 Mar; 500(1-2):275-90. PubMed ID: 26780120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is PAMPA a useful tool for discovery?
    Galinis-Luciani D; Nguyen L; Yazdanian M
    J Pharm Sci; 2007 Nov; 96(11):2886-92. PubMed ID: 17694546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipophilicity and biological acitivity. Drug transport and drug distribution in model systems and in biological systems.
    Kubinyi H
    Arzneimittelforschung; 1979; 29(8):1067-80. PubMed ID: 40579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skin permeability of various drugs with different lipophilicity.
    Lee CK; Uchida T; Kitagawa K; Yagi A; Kim NS; Goto S
    J Pharm Sci; 1994 Apr; 83(4):562-5. PubMed ID: 8046615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput lipophilicity measurement with immobilized artificial membranes.
    Faller B; Grimm HP; Loeuillet-Ritzler F; Arnold S; Briand X
    J Med Chem; 2005 Apr; 48(7):2571-6. PubMed ID: 15801846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear free energy relationship analysis of permeability across polydimethylsiloxane (PDMS) membranes and comparison with human skin permeation in vitro.
    Liu X; Zhang K; Abraham MH
    Eur J Pharm Sci; 2018 Oct; 123():524-530. PubMed ID: 30107227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasi-equilibrium analysis of the ion-pair mediated membrane transport of low-permeability drugs.
    Miller JM; Dahan A; Gupta D; Varghese S; Amidon GL
    J Control Release; 2009 Jul; 137(1):31-7. PubMed ID: 19264104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative structure--activity relationships. 7. The bilinear model, a new model for nonlinear dependence of biological activity on hydrophobic character.
    Kubinyi H
    J Med Chem; 1977 May; 20(5):625-9. PubMed ID: 857018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of O-acylmenthol on transdermal delivery of drugs with different lipophilicity.
    Zhao L; Fang L; Xu Y; Zhao Y; He Z
    Int J Pharm; 2008 Mar; 352(1-2):92-103. PubMed ID: 18053661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilized Artificial Membrane HPLC Derived Parameters vs PAMPA-BBB Data in Estimating in Situ Measured Blood-Brain Barrier Permeation of Drugs.
    Grumetto L; Russo G; Barbato F
    Mol Pharm; 2016 Aug; 13(8):2808-16. PubMed ID: 27377191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of vitreal half-life based on drug physicochemical properties: quantitative structure-pharmacokinetic relationships (QSPKR).
    Durairaj C; Shah JC; Senapati S; Kompella UB
    Pharm Res; 2009 May; 26(5):1236-60. PubMed ID: 18841448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general approach for the prediction of the intestinal absorption of drugs: regression analysis using the physicochemical properties and drug-membrane electrostatic interaction.
    Sugawara M; Takekuma Y; Yamada H; Kobayashi M; Iseki K; Miyazaki K
    J Pharm Sci; 1998 Aug; 87(8):960-6. PubMed ID: 9687340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the artificial membrane permeability of drugs by digital simulation.
    Nakamura M; Osakai T
    Eur J Pharm Sci; 2016 Aug; 91():154-61. PubMed ID: 27334569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential of immobilized artificial membrane chromatography to predict human oral absorption.
    Tsopelas F; Vallianatou T; Tsantili-Kakoulidou A
    Eur J Pharm Sci; 2016 Jan; 81():82-93. PubMed ID: 26485055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico prediction of human oral absorption based on QSAR analyses of PAMPA permeability.
    Akamatsu M; Fujikawa M; Nakao K; Shimizu R
    Chem Biodivers; 2009 Nov; 6(11):1845-66. PubMed ID: 19937826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.