BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 7205613)

  • 1. Membrane potential changes in lacrimal gland acinar cells elicited by carbachol and epinephrine.
    Parod RJ; Dambach GE; Putney JW
    J Pharmacol Exp Ther; 1980 Jun; 213(3):473-9. PubMed ID: 7205613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular Ca2+ injection causes membrane hyperpolarization and conductance increase in lacrimal acinar cells.
    Iwatsuki N; Petersen OH
    Pflugers Arch; 1979 Jan; 378(3):185-7. PubMed ID: 571083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the Na+/K+-ATPase in regulating the membrane potential in rat peritoneal mast cells.
    Friis UG; Praetorius HA; Knudsen T; Johansen T
    Br J Pharmacol; 1997 Oct; 122(4):599-604. PubMed ID: 9375953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscarinic and alpha-adrenergic stimulation of Na and Ca uptake by dispersed lacrimal cells.
    Parod RJ; Leslie BA; Putney JW
    Am J Physiol; 1980 Aug; 239(2):G99-105. PubMed ID: 7406052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lacrimal gland flow and potentials during dinitrophenol, ouabain, and ethacrynic acid perfusion.
    Botelho SY; Fuenmayor N
    Invest Ophthalmol Vis Sci; 1981 Apr; 20(4):515-21. PubMed ID: 7216669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nitric oxide donors, S-nitroso-L-cysteine and sodium nitroprusside, on the whole-cell and single channel currents in single myocytes of the guinea-pig proximal colon.
    Lang RJ; Watson MJ
    Br J Pharmacol; 1998 Feb; 123(3):505-17. PubMed ID: 9504392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray microanalysis of rat exorbital lacrimal gland.
    Roomans GM
    Scan Electron Microsc; 1984; (Pt 2):889-95. PubMed ID: 6484504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secretagogue-induced redistributions of Na,K-ATPase in rat lacrimal acini.
    Yiu SC; Lambert RW; Tortoriello PJ; Mircheff AK
    Invest Ophthalmol Vis Sci; 1991 Oct; 32(11):2976-84. PubMed ID: 1655674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane potential, resistance, and intercellular communication in the lacrimal gland: effects of acetylcholine and adrenaline.
    Iwatsuki N; Petersen OH
    J Physiol; 1978 Feb; 275():507-20. PubMed ID: 633148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+-ATPases in the rat CA1 hippocampal region.
    Vaillend C; Mason SE; Cuttle MF; Alger BE
    J Neurophysiol; 2002 Dec; 88(6):2963-78. PubMed ID: 12466422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium currents regulating secretion from Brunner's glands in guinea pig duodenum.
    Kovac J; Moore B; Vanner S
    Am J Physiol Gastrointest Liver Physiol; 2004 Mar; 286(3):G377-84. PubMed ID: 14604859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Beta 1-adrenoceptor-mediated changes in intracellular Na+, K+, Cl- activities and pHi in guinea-pig ventricular myocardium].
    Shida S
    Hokkaido Igaku Zasshi; 1994 Jul; 69(4):877-89. PubMed ID: 7959598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of carbachol-induced oscillatory Cl- secretion by forskolin in rat parotid and submandibular acinar cells.
    Shintani T; Hirono C; Sugita M; Iwasa Y; Shiba Y
    Am J Physiol Gastrointest Liver Physiol; 2008 Mar; 294(3):G738-47. PubMed ID: 18187520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gs and Gq/11 couple vasoactive intestinal peptide and cholinergic stimulation to lacrimal secretion.
    Meneray MA; Fields TY; Bennett DJ
    Invest Ophthalmol Vis Sci; 1997 May; 38(6):1261-70. PubMed ID: 9152245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pancreatic acinar cells: ionic dependence of the membrane potential and acetycholine-induced depolarization.
    Matthews EK; Petersen OH
    J Physiol; 1973 Jun; 231(2):283-95. PubMed ID: 4352766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholine-induced Na+ influx in the mouse lacrimal gland acinar cells: demonstration of multiple Na+ transport mechanisms by intracellular Na+ activity measurements.
    Saito Y; Ozawa T; Nishiyama A
    J Membr Biol; 1987; 98(2):135-44. PubMed ID: 3669067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane potential measurement in parotid acinar cells.
    Pedersen GL; Petersen OH
    J Physiol; 1973 Oct; 234(1):217-27. PubMed ID: 4797341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cannabinoid CB1 receptor and endothelium-dependent hyperpolarization in guinea-pig carotid, rat mesenteric and porcine coronary arteries.
    Chataigneau T; Félétou M; Thollon C; Villeneuve N; Vilaine JP; Duhault J; Vanhoutte PM
    Br J Pharmacol; 1998 Mar; 123(5):968-74. PubMed ID: 9535027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An alpha-adrenergic receptor mechanism controlling potassium permeability in the rat lacrimal gland acinar cell.
    Parod RJ; Putney JW
    J Physiol; 1978 Aug; 281():359-69. PubMed ID: 212553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adrenergic stimulation of lacrimal protein secretion is mediated by G(q/11)alpha and G(s)alpha.
    Meneray MA; Fields TY
    Curr Eye Res; 2000 Aug; 21(2):602-7. PubMed ID: 11148596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.