These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 7205965)

  • 1. Catalysis of peptide bond formation by histidyl-histidine in a fluctuating clay environment.
    White DH; Erickson JC
    J Mol Evol; 1980 Dec; 16(3-4):279-90. PubMed ID: 7205965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A possible role of fluctuating clay-water systems in the production of ordered prebiotic oligomers.
    Lahav N; White DH
    J Mol Evol; 1980 Sep; 16(1):11-21. PubMed ID: 7441778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The combination of salt induced peptide formation reaction and clay catalysis: a way to higher peptides under primitive earth conditions.
    Rode BM; Son HL; Suwannachot Y
    Orig Life Evol Biosph; 1999 May; 29(3):273-86. PubMed ID: 10465717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prebiotic synthesis of histidyl-histidine.
    Shen C; Mills T; Oro J
    J Mol Evol; 1990 Sep; 31(3):175-9. PubMed ID: 11536479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of the prebiotic synthesis of oligopeptides: silicate catalysts help to overcome the critical stage.
    Zamaraev KI; Romannikov VN; Salganik RI; Wlassoff WA; Khramtsov VV
    Orig Life Evol Biosph; 1997 Aug; 27(4):325-37. PubMed ID: 11536826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of smectite composition on the catalysis of peptide bond formation.
    Bujdák J; Rode BM
    J Mol Evol; 1996 Oct; 43(4):326-33. PubMed ID: 8798338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silica, alumina and clay catalyzed peptide bond formation: enhanced efficiency of alumina catalyst.
    Bujdák J; Rode BM
    Orig Life Evol Biosph; 1999 Oct; 29(5):451-61. PubMed ID: 10573687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clays in prebiological chemistry.
    Rao M; Odom DG; Oró J
    J Mol Evol; 1980 Aug; 15(4):317-31. PubMed ID: 7411654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prebiotic peptide-formation in the solid state. II. Reaction of glycine with adenosine 5'-triphosphate and P1,P2-diadenosine-pyrophosphate.
    Sawai H; Lohrmann R; Orgel LE
    J Mol Evol; 1975 Nov; 6(3):165-84. PubMed ID: 1538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical investigation of the role of clay edges in prebiotic peptide bond formation. I. Structures of acetic acid, glycine, H2SO4, H3PO4, Si(OH)4, Al(OH)4-.
    Luke BT; Gupta AG; Loew GH; Lawless JG; White DH
    Int J Quantum Chem Quantum Biol Symp; 1984; 11():117-35. PubMed ID: 11540814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments.
    Lahav N; White D; Chang S
    Science; 1978 Jul; 201(4350):67-9. PubMed ID: 663639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of RNA phosphodiester bond by histidine-containing dipeptides.
    Wieczorek R; Dörr M; Chotera A; Luisi PL; Monnard PA
    Chembiochem; 2013 Jan; 14(2):217-23. PubMed ID: 23255284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The initial binding of Cu(II) to some amino acids and dipeptides: a 13C nuclear-magnetic-resonance study.
    Voelter W; Sokolowski G; Weber U; Weser U
    Eur J Biochem; 1975 Oct; 58(1):159-66. PubMed ID: 1183432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Letter to the editor: A re-examination of the zeolite-promoted, clay-mediated peptide synthesis.
    Warden JT; McCullough JJ; Lemmon RM; Calvin M
    J Mol Evol; 1974 Nov; 4(2):189-94. PubMed ID: 4469277
    [No Abstract]   [Full Text] [Related]  

  • 15. Catalysis and selectivity in prebiotic synthesis: initiation of the formation of oligo(U)s on montmorillonite clay by adenosine-5'-methylphosphate.
    Wang KJ; Ferris JP
    Orig Life Evol Biosph; 2005 Jun; 35(3):187-212. PubMed ID: 16228638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure and synthetic capabilities of a catalytic peptide formed by substrate-directed mechanism--implications to prebiotic catalysis.
    Fleminger G; Yaron T; Eisenstein M; Bar-Nun A
    Orig Life Evol Biosph; 2005 Aug; 35(4):369-82. PubMed ID: 16228649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The enhancement activities of histidyl-histidine in some prebiotic reactions.
    Shen C; Lazcano A; Oro J
    J Mol Evol; 1990; 31():445-52. PubMed ID: 11540924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arginine in the salt-induced peptide formation reaction: enantioselectivity facilitated by glycine, L- and D-histidine.
    Li F; Fitz D; Fraser DG; Rode BM
    Amino Acids; 2010 Jul; 39(2):579-85. PubMed ID: 20099003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clay catalyzed RNA synthesis under Martian conditions: Application for Mars return samples.
    Joshi PC; Dubey K; Aldersley MF; Sausville M
    Biochem Biophys Res Commun; 2015 Jun; 462(2):99-104. PubMed ID: 25888789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation versus hydrolysis of the peptide bond from a quantum-mechanical viewpoint: The role of mineral surfaces and implications for the origin of life.
    Rimola A; Ugliengo P; Sodupe M
    Int J Mol Sci; 2009 Mar; 10(3):746-60. PubMed ID: 19399219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.