These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7206186)

  • 1. The potential distribution on the epicardial surface and in the surrounding volume conductor.
    Mashima S; Takayanagi K
    Jpn Circ J; 1981 Mar; 45(3):337-41. PubMed ID: 7206186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epicardial potential mapping. Effects of conducting media on isopotential and isochrone distributions.
    Green LS; Taccardi B; Ershler PR; Lux RL
    Circulation; 1991 Dec; 84(6):2513-21. PubMed ID: 1959201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The magnitude of the electromotive force of canine ventricular myocardium.
    Mashima S; Harumi K; Murao S
    Circ Res; 1978 Jun; 42(6):757-63. PubMed ID: 657434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of the epicardial breakthrough on body surface isopotential maps: influence of the inter-electrode distance on the patterns reflecting the epicardial breakthrough.
    Toyama J; Tabata O
    Jpn Circ J; 1981 Oct; 45(10):1172-8. PubMed ID: 7299996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of septal pacing sites in the dog heart by epicardial mapping.
    Smith WM; Ideker RE; Smith WM; Kasell J; Harrison L; Bardy GH; Gallagher JJ; Wallace AG
    J Am Coll Cardiol; 1983 Jun; 1(6):1423-34. PubMed ID: 6853898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimates of repolarization dispersion from electrocardiographic measurements.
    Fuller MS; Sándor G; Punske B; Taccardi B; MacLeod RS; Ershler PR; Green LS; Lux RL
    Circulation; 2000 Aug; 102(6):685-91. PubMed ID: 10931810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of myocardial fiber direction on epicardial potentials.
    Taccardi B; Macchi E; Lux RL; Ershler PR; Spaggiari S; Baruffi S; Vyhmeister Y
    Circulation; 1994 Dec; 90(6):3076-90. PubMed ID: 7994857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalized training subset selection for statistical estimation of epicardial activation maps from intravenous catheter measurements.
    Yilmaz B; MacLeod RS
    Comput Biol Med; 2007 Mar; 37(3):328-36. PubMed ID: 16701613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental appraisal for diagnosis of right bundle branch block using the body surface isopotential maps.
    Toyama J; Ohno M; Kohbe T
    Jpn Circ J; 1981 Apr; 45(4):491-502. PubMed ID: 7218503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous epicardial and endocardial activation sequence mapping in the isolated canine right atrium.
    Schuessler RB; Kawamoto T; Hand DE; Mitsuno M; Bromberg BI; Cox JL; Boineau JP
    Circulation; 1993 Jul; 88(1):250-63. PubMed ID: 8319340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental evidence for regional cardiac influence in body surface isopotential maps of dogs.
    Abildskov JA; Burgess MJ; Lux RL; Wyatt RF
    Circ Res; 1976 May; 38(5):386-91. PubMed ID: 1269077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive electrocardiographic imaging: reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events.
    Oster HS; Taccardi B; Lux RL; Ershler PR; Rudy Y
    Circulation; 1997 Aug; 96(3):1012-24. PubMed ID: 9264513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epicardial potential distribution reconstruction from recordings of intravenous and transthoracic mapping catheters: a feasibility study.
    Yilmaz B
    Med Eng Phys; 2007 Nov; 29(9):937-45. PubMed ID: 17110153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Estimation of location and size of myocardial infarction from body surface potentials using the ECG inverse solution method].
    Tanaka H; Hirayanagi K; Aoki T; Ihara T; Yamanoi N; Furukawa T
    J Cardiogr; 1985 Sep; 15(3):715-28. PubMed ID: 3837063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of body surface QRS and T wave potentials from epicardial potential distributions in the intact chimpanzee.
    Spach MS; Barr RC; Lanning CF; Tucek PC
    Circulation; 1977 Feb; 55(2):268-8. PubMed ID: 832342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential gradient field created by epicardial defibrillation electrodes in dogs.
    Chen PS; Wolf PD; Claydon FJ; Dixon EG; Vidaillet HJ; Danieley ND; Pilkington TC; Ideker RE
    Circulation; 1986 Sep; 74(3):626-36. PubMed ID: 3742760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The epicardial field potential in dog: implications for recording site density during epicardial mapping.
    Pieper CF; Pacifico A
    Pacing Clin Electrophysiol; 1993 Jun; 16(6):1263-74. PubMed ID: 7686656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlations between the spread of ventricular activation and map patterns of measured and difference maps.
    Toyoshima H
    Am Heart J; 1976 Aug; 92(2):183-92. PubMed ID: 941830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The sock electrode array: a tool for determining global epicardial activation during unstable arrhythmias.
    Harrison L; Ideker RE; Smith WM; Klein GJ; Kasell J; Wallace AG; Gallagher JJ
    Pacing Clin Electrophysiol; 1980 Sep; 3(5):531-40. PubMed ID: 6160551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inverse problem in electrocardiography: solutions in terms of epicardial potentials.
    Rudy Y; Messinger-Rapport BJ
    Crit Rev Biomed Eng; 1988; 16(3):215-68. PubMed ID: 3064971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.