These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 7206361)

  • 1. Ascorbic acid, an endogenous factor required for acetylcholine release from the synaptic vesicles.
    Kuo CH; Yoshida H
    Jpn J Pharmacol; 1980 Aug; 30(4):481-92. PubMed ID: 7206361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of synaptic plasma membranes on release of acetylcholine from synaptic vesicles.
    Kuo CH; Ichida S; Hata F; Yoshida H
    Jpn J Pharmacol; 1978 Jun; 28(3):339-43. PubMed ID: 702938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholinergic nerve terminals contain ascorbic acid which induces Ca2+-dependent release of acetylcholine and ATP from isolated Torpedo synaptic vesicles.
    Pinchasi I; Michaelson DM; Sokolovsky M
    FEBS Lett; 1979 Dec; 108(1):189-92. PubMed ID: 520543
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of ascorbic acid on release of acetylcholine from synaptic vesicles prepared from different species of animals and release of noradrenaline from synaptic vesicles of rat brain.
    Kuo CH; Hata F; Yoshida H; Yamatodani A; Wada H
    Life Sci; 1979 Mar; 24(10):911-5. PubMed ID: 109717
    [No Abstract]   [Full Text] [Related]  

  • 5. Acetylcholine changes underlying transmission of a single nerve impulse in the presence of 4-aminopyridine in Torpedo.
    Corthay J; Dunant Y; Loctin F
    J Physiol; 1982 Apr; 325():461-79. PubMed ID: 6286942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of exocytotic mechanisms between acetylcholine- and catecholamine-containing vesicles in rat pheochromocytoma cells.
    Nishiki T; Shoji-Kasai Y; Sekiguchi M; Iwasaki S; Kumakura K; Takahashi M
    Biochem Biophys Res Commun; 1997 Oct; 239(1):57-62. PubMed ID: 9345269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AH5183 and cetiedil: two potent inhibitors of acetylcholine uptake into isolated synaptic vesicles from Torpedo marmorata.
    Diebler MF; Gaudry-Talarmain YM
    J Neurochem; 1989 Mar; 52(3):813-21. PubMed ID: 2521893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors required for Ca-sensitive acetylcholine release from crude synaptic vesicles.
    Hata F; Kuo CH; Matsuda T; Yoshida H
    J Neurochem; 1976 Jul; 27(1):139-44. PubMed ID: 956822
    [No Abstract]   [Full Text] [Related]  

  • 9. Biochemical evidence that acetylcholine release from cholinergic nerve terminals is mostly vesicular.
    Michaelson DM; Burstein M
    FEBS Lett; 1985 Sep; 188(2):389-93. PubMed ID: 4029394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium uptake by cholinergic synaptic vesicles.
    Israël M; Manaranche R; Marsal J; Meunier FM; Morel N; Frachon P; Lesbats B
    J Physiol (Paris); 1980 Sep; 76(5):479-85. PubMed ID: 7452516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetylcholine release from isolated synaptic vesicles related to ionic permeability changes: continuous detection with a chemiluminescent method.
    Diebler MF
    J Neurochem; 1982 Nov; 39(5):1405-11. PubMed ID: 6288874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylcholine, ATP, and proteoglycan are common to synaptic vesicles isolated from the electric organs of electric eel and electric catfish as well as from rat diaphragm.
    Volknandt W; Zimmermann H
    J Neurochem; 1986 Nov; 47(5):1449-62. PubMed ID: 3760871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cetiedil analogs on acetylcholine and choline fluxes in synaptosomes and vesicles.
    Gaudry-Talarmain YM; Diebler MF; Robba M; Lancelot JC; Lesbats B; Israël M
    Eur J Pharmacol; 1989 Aug; 166(3):427-33. PubMed ID: 2806370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca(2+)-independent fusion of synaptic vesicles with phospholipase A2-treated presynaptic membranes in vitro.
    Nishio H; Takeuchi T; Hata F; Yagasaki O
    Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):981-7. PubMed ID: 8836147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylcholine active transport by rat brain synaptic vesicles.
    Haigh JR; Noremberg K; Parsons SM
    Neuroreport; 1994 Mar; 5(7):773-6. PubMed ID: 8018848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effect of endogenous macromolecule on the Ca++-stimulated acetylcholine release from the crude synaptic vesicles.
    Hata F; Kuo CH; Matsuda T; Yoshida H
    Jpn J Pharmacol; 1976 Dec; 26(6):762-4. PubMed ID: 1021613
    [No Abstract]   [Full Text] [Related]  

  • 17. Saturable acetylcholine transport into purified cholinergic synaptic vesicles.
    Michaelson DM; Angel I
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2048-52. PubMed ID: 6941269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stoichiometries of acetylcholine uptake, release, and drug inhibition in Torpedo synaptic vesicles: heterogeneity in acetylcholine transport and storage.
    Anderson DC; Bahr BA; Parsons SM
    J Neurochem; 1986 Apr; 46(4):1207-13. PubMed ID: 3950624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors required for calcium dependent acetylcholine release from isolated torpedo synaptic vesicles.
    Michaelson DM; Pinchasi I; Sokolovsky M
    Biochem Biophys Res Commun; 1978 Feb; 80(3):547-52. PubMed ID: 204306
    [No Abstract]   [Full Text] [Related]  

  • 20. Isolation of synaptic vesicles from Narcine brasiliensis electric organ: some influences on release of vesicular acetylcholine and ATP.
    Boyne AF
    Brain Res; 1976 Sep; 114(3):481-91. PubMed ID: 953769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.