These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
69 related articles for article (PubMed ID: 7206450)
1. [Mechanisms of disorders of the bioenergetic functions of mitochondrial membranes in hypoxia]. Vladimirov IuA; Kogan EM Kardiologiia; 1981 Jan; 21(1):82-5. PubMed ID: 7206450 [TBL] [Abstract][Full Text] [Related]
2. [Role of phospholipase A2 in anoxic injury to the energy-dependent functions of the mitochondria]. Bragin EO; Dergunov AD; Neugodova GL; Sorokovoĭ VI; Vladimirov IuA Vopr Med Khim; 1977; 23(5):673-6. PubMed ID: 413264 [TBL] [Abstract][Full Text] [Related]
3. Ca(2+)-induced, phospholipase-independent injury during reoxygenation of anoxic mitochondria. Inoue T; Yoshida Y; Nishimura M; Kurosawa K; Tagawa K Biochim Biophys Acta; 1993 Jan; 1140(3):313-20. PubMed ID: 8417780 [TBL] [Abstract][Full Text] [Related]
4. [Phospholipase A activity determines the rate of respiration of the mitochondria in hibernating animals]. Brustovetskiĭ NN; Grishina EV; Maevskiĭ EI; Amerkhanov ZG; Kim IuA Biull Eksp Biol Med; 1989 Oct; 108(10):488-90. PubMed ID: 2597769 [TBL] [Abstract][Full Text] [Related]
5. Effects of all-trans-retinoic acid on the permeability transition and bioenergetic functions of rat liver mitochondria in combination with endoxifen. Ribeiro MP; Santos AE; Santos MS; Custódio JB Life Sci; 2013 Jul; 93(2-3):96-107. PubMed ID: 23764110 [TBL] [Abstract][Full Text] [Related]
7. Regulation of oxidative activity and delta psi of liver mitochondria of active and hibernating gophers. The role of phospholipase A2. Brustovetsky NN; Egorova MV; Mayevsky EI Comp Biochem Physiol B; 1992 Jul; 102(3):635-8. PubMed ID: 1499301 [TBL] [Abstract][Full Text] [Related]
8. Ca(2+) rise within a narrow window of concentration prevents functional injury of mitochondria exposed to hypoxia/reoxygenation by increasing antioxidative defence. Schild L; Plumeyer F; Reiser G FEBS J; 2005 Nov; 272(22):5844-52. PubMed ID: 16279948 [TBL] [Abstract][Full Text] [Related]
10. [Cation permeability of liver mitochondrial membranes during Ca+-dependent anoxic damage in vitro]. Bragin EO; Sorokovoĭ VI; Chernikov VP; Kogan EM; Vladimirov IuA Vopr Med Khim; 1977; (3):297-302. PubMed ID: 888394 [TBL] [Abstract][Full Text] [Related]
11. Effects of hypoxia-cadmium interactions on rainbow trout (Oncorhynchus mykiss) mitochondrial bioenergetics: attenuation of hypoxia-induced proton leak by low doses of cadmium. Onukwufor JO; MacDonald N; Kibenge F; Stevens D; Kamunde C J Exp Biol; 2014 Mar; 217(Pt 6):831-40. PubMed ID: 24265424 [TBL] [Abstract][Full Text] [Related]
12. [Biochemical bases of the inhibition and activation of liver mitochondrial respiration in hibernating susliks]. Brustovetskiĭ NN; Gogvadze VG; Maevskiĭ EI Nauchnye Doki Vyss Shkoly Biol Nauki; 1988; (4):14-20. PubMed ID: 3395650 [TBL] [Abstract][Full Text] [Related]
13. [Stabilizing effect of the antioxidants alpha-tocopherol and sodium selenite following phospholipase damage to mitochondrial membranes in a model of anoxia]. Seĭfulla RD; Onishchenko NA; Artamonov SD; Timofeev AB; Chubarova AV Farmakol Toksikol; 1979; 42(2):157-63. PubMed ID: 437084 [TBL] [Abstract][Full Text] [Related]
14. Sulfite disrupts brain mitochondrial energy homeostasis and induces mitochondrial permeability transition pore opening via thiol group modification. Grings M; Moura AP; Amaral AU; Parmeggiani B; Gasparotto J; Moreira JC; Gelain DP; Wyse AT; Wajner M; Leipnitz G Biochim Biophys Acta; 2014 Sep; 1842(9):1413-22. PubMed ID: 24793416 [TBL] [Abstract][Full Text] [Related]
15. [Activation of oxidative phosphorylation and energy-dependent absorption of Ca2+ and K+ ions by liver mitochondria of hibernating ground squirrels in hypotonic media]. Brustovetskiĭ NN; Egorova MV; Grishina EV; Maevskiĭ EI Biokhimiia; 1991 Aug; 56(8):1528-34. PubMed ID: 1782270 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of the deleterious effects of tamoxifen on mitochondrial respiration rate and phosphorylation efficiency. Cardoso CM; Custódio JB; Almeida LM; Moreno AJ Toxicol Appl Pharmacol; 2001 Nov; 176(3):145-52. PubMed ID: 11714246 [TBL] [Abstract][Full Text] [Related]
17. Uncoupling, metabolic inhibition and induction of mitochondrial permeability transition in rat liver mitochondria caused by the major long-chain hydroxyl monocarboxylic fatty acids accumulating in LCHAD deficiency. Hickmann FH; Cecatto C; Kleemann D; Monteiro WO; Castilho RF; Amaral AU; Wajner M Biochim Biophys Acta; 2015; 1847(6-7):620-8. PubMed ID: 25868874 [TBL] [Abstract][Full Text] [Related]
18. Differential requirements of calcium for oxoglutarate dehydrogenase and mitochondrial nitric-oxide synthase under hypoxia: impact on the regulation of mitochondrial oxygen consumption. Solien J; Haynes V; Giulivi C Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct; 142(2):111-7. PubMed ID: 15972265 [TBL] [Abstract][Full Text] [Related]
19. Metabolic stages, mitochondria and calcium in hypoxic/ischemic brain damage. Kristián T Cell Calcium; 2004; 36(3-4):221-33. PubMed ID: 15261478 [TBL] [Abstract][Full Text] [Related]
20. [Participation of phospholipase A2 in uncoupling in rat liver mitochondria induced by products of lipid peroxidation]. Gogvadze VG; Bruetovetskiĭ NN; Zhukova AA Biokhimiia; 1990 Dec; 55(12):2195-9. PubMed ID: 2129018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]