These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7207)

  • 21. Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae.
    Donald KA; Hampton RY; Fritz IB
    Appl Environ Microbiol; 1997 Sep; 63(9):3341-4. PubMed ID: 9292983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of partitioned sterol biosynthesis in Saccharomyces cerevisiae.
    Casey WM; Keesler GA; Parks LW
    J Bacteriol; 1992 Nov; 174(22):7283-8. PubMed ID: 1429452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in synthesis of sterols and fatty acids associated with inhibition of growth of L-M cells at high cell density.
    Maltese WA; Reitz BA; Volpe JJ
    Biochim Biophys Acta; 1981 Mar; 663(3):645-52. PubMed ID: 6112018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological roles of acetoacetyl-CoA thiolase in n-alkane-utilizable yeast, Candida tropicalis: possible contribution to alkane degradation and sterol biosynthesis.
    Kurihara T; Ueda M; Kamasawa N; Osumi M; Tanaka A
    J Biochem; 1992 Dec; 112(6):845-8. PubMed ID: 1363552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A study of the density pattern of ATPase and respiratory enzymes during mitochondrial biogenesis of Saccharomyces cerevisiae.
    Somlo M; Krupa M
    Eur J Biochem; 1974 Mar; 42(2):429-37. PubMed ID: 4364249
    [No Abstract]   [Full Text] [Related]  

  • 26. Salt stress affects sterol biosynthesis in the halophilic black yeast Hortaea werneckii.
    Petrovic U; Gunde-Cimerman N; Plemenitas A
    FEMS Microbiol Lett; 1999 Nov; 180(2):325-30. PubMed ID: 10556729
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Observations on squalene accumulation in Saccharomyces cerevisiae due to the manipulation of HMG2 and ERG6.
    Mantzouridou F; Tsimidou MZ
    FEMS Yeast Res; 2010 Sep; 10(6):699-707. PubMed ID: 20550581
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The regulation of activity of main mevalonic acid pathway enzymes: farnesyl diphosphate synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, and squalene synthase in yeast Saccharomyces cerevisiae.
    Szkopińska A; Swiezewska E; Karst F
    Biochem Biophys Res Commun; 2000 Jan; 267(1):473-7. PubMed ID: 10623644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sterol metabolism and ERG2 gene regulation in the yeast Saccharomyces cerevisiae.
    Soustre I; Dupuy PH; Silve S; Karst F; Loison G
    FEBS Lett; 2000 Mar; 470(2):102-6. PubMed ID: 10734216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of cholesterol biosynthesis.
    Nutr Rev; 1987 Mar; 45(3):92-4. PubMed ID: 2883621
    [No Abstract]   [Full Text] [Related]  

  • 31. [Possible role of acetyl-CoA-carboxylase in biosynthesis of mevalonic acid and sterols in rat liver].
    Poliakova ED; Denisenko TV; Klimova TA; Dizhe EB; Petrova LA
    Biokhimiia; 1976 Jul; 41(6):1067-77. PubMed ID: 17434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of peroxisomal 3-hydroxy-3-methylglutaryl coenzyme A reductase in UT2 cells: sterol biosynthesis, phosphorylation, degradation, and statin inhibition.
    Aboushadi N; Shackelford JE; Jessani N; Gentile A; Krisans SK
    Biochemistry; 2000 Jan; 39(1):237-47. PubMed ID: 10625499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of sterol biosynthesis by ergosterol and cholesterol in Saccharomyces cerevisiae.
    Pinto WJ; Lozano R; Nes WR
    Biochim Biophys Acta; 1985 Aug; 836(1):89-95. PubMed ID: 3896318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Further characterization of a Chinese hamster ovary cell mutant requiring cholesterol and unsaturated fatty acid for growth.
    Chin J; Chang TY
    Biochemistry; 1982 Jun; 21(13):3196-202. PubMed ID: 6125210
    [No Abstract]   [Full Text] [Related]  

  • 35. A correlation between oxygen requirements and the products of sterol synthesis in strains of Saccharomyces cerevisiae.
    David MH; Kirsop BH
    J Gen Microbiol; 1973 Aug; 77(2):529-31. PubMed ID: 4584066
    [No Abstract]   [Full Text] [Related]  

  • 36. General resistance to sterol biosynthesis inhibitors in Saccharomyces cerevisiae.
    Ladevèze V; Marcireau C; Delourme D; Karst F
    Lipids; 1993 Oct; 28(10):907-12. PubMed ID: 8246690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of in vitro cholesterol synthesis by fatty acids.
    Kuroda M; Endo A
    Biochim Biophys Acta; 1976 Jan; 486(1):70-81. PubMed ID: 12837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3β-ol accumulation by metabolic engineering.
    Ma BX; Ke X; Tang XL; Zheng RC; Zheng YG
    World J Microbiol Biotechnol; 2018 Mar; 34(4):55. PubMed ID: 29594560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A reporter gene assay for fungal sterol biosynthesis inhibitors.
    Dixon G; Scanlon D; Cooper S; Broad P
    J Steroid Biochem Mol Biol; 1997 Jun; 62(2-3):165-71. PubMed ID: 9393951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of unsaturated fatty acids on sterol biosynthesis in yeast.
    Boll M; Löwel M; Berndt J
    Biochim Biophys Acta; 1980 Dec; 620(3):429-39. PubMed ID: 7016186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.