These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 7207427)
61. Dosimetry of low-energy neutrons using low-pressure proportional counters. Schuhmacher H; Alberts WG; Menzel HG; Bühler G Radiat Res; 1987 Jul; 111(1):1-13. PubMed ID: 3602347 [TBL] [Abstract][Full Text] [Related]
62. Dosimetric properties of p(90)+(Be + Ta) and p(101)+(Be + Al) neutrons. Harrison GH; Balcer-Kubiczek EK; Cox CR Med Phys; 1980; 7(4):348-51. PubMed ID: 6771513 [TBL] [Abstract][Full Text] [Related]
63. A comparison of the gamma component of two high energy neutron therapy beams. Jones DT; Vynckier S; Yudelev M Strahlenther Onkol; 1990 Nov; 166(11):745-8. PubMed ID: 2175455 [TBL] [Abstract][Full Text] [Related]
64. The effect of bone on dose distributions produced by the Fermi National Laboratory fast-neutron beam. McGinley PH; McLaren JR Radiology; 1979 Oct; 133(1):246-8. PubMed ID: 472305 [TBL] [Abstract][Full Text] [Related]
65. The use of neutron and gamma ray spectral measurements and calculations to obtain dosimetric information for DT neutrons. Hertel NE; Murphie WE Med Phys; 1983; 10(1):66-74. PubMed ID: 6843515 [TBL] [Abstract][Full Text] [Related]
66. Characteristics of an ethylene-polyethylene high-pressure ionization chamber and its potential for deriving radiation dose and quality information in neutron-gamma radiation fields. Makrigiorgos G Med Phys; 1988; 15(1):36-9. PubMed ID: 3352549 [TBL] [Abstract][Full Text] [Related]
67. Physical characterization of neutron beams produced by protons and deuterons of various energies bombarding beryllium and lithium targets of several thicknesses. Amols HI; Dicello F; Awschalom M; Coulson L; Johnsen SW; Theus RB Med Phys; 1977; 4(6):486-93. PubMed ID: 412047 [TBL] [Abstract][Full Text] [Related]
68. Determination of the gamma-ray dose in an epithermal neutron beam. Raaijmakers CP; Konijnenberg MW; Mijnheer BJ; Stecher-Rasmussen F; Verhagen H Strahlenther Onkol; 1993 Jan; 169(1):18-20. PubMed ID: 8434334 [TBL] [Abstract][Full Text] [Related]
69. High energy fast neutrons from the Harwell variable energy cyclotron. I. Physical characteristics. Goodhead DT; Berry RJ; Bance DA; Gray P; Stedeford JB AJR Am J Roentgenol; 1977 Oct; 129(4):709-16. PubMed ID: 409249 [TBL] [Abstract][Full Text] [Related]
70. [Clinical dosimetric properties of the TLD-300 thermoluminescent dosimetry detector and its use for measuring spatial dose distribution in patient radiation planning]. Olthoff-Münter K; Baumhoer W Strahlentherapie; 1985 Feb; 161(2):98-101. PubMed ID: 3975947 [TBL] [Abstract][Full Text] [Related]
71. Absolute dosimetry in a d(14 MeV) + Be fast neutron beam. Bourhis-Martin E; Brede HJ; Greif KD; Baumhoer W; Rassow J; Sauerwein W Med Phys; 2004 Apr; 31(4):832-8. PubMed ID: 15125001 [TBL] [Abstract][Full Text] [Related]
72. [IV. Studies on cell biological experiments to the relative biological effectiveness (RBE) of fast neutrons in different phantom depths (author's transl)]. Magdon E Arch Geschwulstforsch; 1975; 45(8):746-52. PubMed ID: 1230122 [TBL] [Abstract][Full Text] [Related]
73. A microdosimetric characterization of a cyclotron-produced therapeutic neutron beam. Stafford PM; Horton JL; Almond PR Med Phys; 1987; 14(6):1015-9. PubMed ID: 3696065 [TBL] [Abstract][Full Text] [Related]
74. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system. Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412 [TBL] [Abstract][Full Text] [Related]
75. Effect of variation in the energy spectrum of a cyclotron-produced fast neutron beam in a phantom relevant to its application in radiotherapy. Bonnett DE; Parnell CJ Br J Radiol; 1982 Jan; 55(649):48-55. PubMed ID: 6797499 [TBL] [Abstract][Full Text] [Related]
76. Study and presentation of a fast neutron and photon dosemeter for area and criticality monitoring using radiophotoluminescent glass. Girod M; Bourgois L; Cornillaux G; Andre S; Postaük J Radiat Prot Dosimetry; 2004; 112(3):359-70. PubMed ID: 15537662 [TBL] [Abstract][Full Text] [Related]
77. A comparison of two methods of in vivo dosimetry for a high energy neutron beam. Blake SW; Bonnett DE; Finch J Br J Radiol; 1990 Jun; 63(750):476-81. PubMed ID: 2379072 [TBL] [Abstract][Full Text] [Related]
78. Dosimetry with tissue-equivalent ionisation chambers in fast neutron fields for biomedical applications. Zoetelief J; Broerse JJ Phys Med Biol; 1983 May; 28(5):503-20. PubMed ID: 6867110 [TBL] [Abstract][Full Text] [Related]
79. Dose levels due to neutrons in the vicinity of high-energy medical accelerators. McGinley PH; Wood M; Mills M; Rodriguez R Med Phys; 1976; 3(6):397-402. PubMed ID: 826776 [TBL] [Abstract][Full Text] [Related]
80. The fixed horizontal neutron therapy beam at Edinburgh: dosimetry and radiation protection. Williams JR; Bonnett DE; Parnell CJ Br J Radiol; 1979 Mar; 52(615):197-208. PubMed ID: 107990 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]