These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 7208624)
1. Investigation of the possibility of using photoneutron beams for radiation therapy. Brahme A; Montelius A; Nordell B; Reuthal M; Svensson H Phys Med Biol; 1980 Nov; 25(6):1111-20. PubMed ID: 7208624 [TBL] [Abstract][Full Text] [Related]
2. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs. Chibani O; Ma CM Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965 [TBL] [Abstract][Full Text] [Related]
3. Build-up and depth-dose characteristics of different fast neutron beams relevant for radiotherapy. Mijnheer BJ Br J Radiol; 1978 Feb; 51(602):122-6. PubMed ID: 414808 [TBL] [Abstract][Full Text] [Related]
4. Production of neutrons from water, polyethylene, tissue equivalent material and CR-39 irradiated with 2.5-30 MeV photons. Allen PD; Chaudhri MA Australas Phys Eng Sci Med; 1991 Sep; 14(3):153-6. PubMed ID: 1953501 [TBL] [Abstract][Full Text] [Related]
5. [Neutron pollution in roentgen beams from electron accelerators]. Fehrentz D; Hassib GM; Spyropoulos B Strahlentherapie; 1983 Nov; 159(11):703-12. PubMed ID: 6658859 [TBL] [Abstract][Full Text] [Related]
6. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators. Cardenas CE; Nitsch PL; Kudchadker RJ; Howell RM; Kry SF J Appl Clin Med Phys; 2016 Jul; 17(4):442-455. PubMed ID: 27455499 [TBL] [Abstract][Full Text] [Related]
7. Superheated drop detector for determination of neutron dose equivalent to patients undergoing high-energy x-ray and electron radiotherapy. Nath R; Meigooni AS; King CR; Smolen S; d'Errico F Med Phys; 1993; 20(3):781-7. PubMed ID: 8350837 [TBL] [Abstract][Full Text] [Related]
8. Dosimetric properties of p(90)+(Be + Ta) and p(101)+(Be + Al) neutrons. Harrison GH; Balcer-Kubiczek EK; Cox CR Med Phys; 1980; 7(4):348-51. PubMed ID: 6771513 [TBL] [Abstract][Full Text] [Related]
9. Depth dose-equivalent and effective energies of photoneutrons generated by 6-18 MV X-ray beams for radiotherapy. d'Errico F; Luszik-Bhadra M; Nath R; Siebert BR; Wolf U Health Phys; 2001 Jan; 80(1):4-11. PubMed ID: 11204115 [TBL] [Abstract][Full Text] [Related]
10. Microdosimetric investigations on collimated fast neutron beams for radiation therapy: II. The problem of radiation quality and RBE. Booz J; Fidorra J Phys Med Biol; 1981 Jan; 26(1):43-56. PubMed ID: 6264510 [TBL] [Abstract][Full Text] [Related]
11. Neutron production from a mobile linear accelerator operating in electron mode for intraoperative radiation therapy. Loi G; Dominietto M; Cannillo B; Ciocca M; Krengli M; Mones E; Negri E; Brambilla M Phys Med Biol; 2006 Feb; 51(3):695-702. PubMed ID: 16424589 [TBL] [Abstract][Full Text] [Related]
12. Mixing intensity modulated electron and photon beams: combining a steep dose fall-off at depth with sharp and depth-independent penumbras and flat beam profiles. Korevaar EW; Heijmen BJ; Woudstra E; Huizenga H; Brahme A Phys Med Biol; 1999 Sep; 44(9):2171-81. PubMed ID: 10495112 [TBL] [Abstract][Full Text] [Related]
13. Dose-response relationship of dicentric chromosomes in human lymphocytes obtained for the fission neutron therapy facility MEDAPP at the research reactor FRM II. Schmid E; Wagner FM; Romm H; Walsh L; Roos H Radiat Environ Biophys; 2009 Feb; 48(1):67-75. PubMed ID: 18979115 [TBL] [Abstract][Full Text] [Related]
14. The effect of the flattening filter on photoneutron production at 10 MV in the Varian TrueBeam linear accelerator. Montgomery L; Evans M; Liang L; Maglieri R; Kildea J Med Phys; 2018 Oct; 45(10):4711-4719. PubMed ID: 30141186 [TBL] [Abstract][Full Text] [Related]
15. The effect of field modifier blocks on the fast photoneutron dose equivalent from two high-energy medical linear accelerators. Hashemi SM; Hashemi-Malayeri B; Raisali G; Shokrani P; Sharafi AA; Jafarizadeh M Radiat Prot Dosimetry; 2008; 128(3):359-62. PubMed ID: 17875628 [TBL] [Abstract][Full Text] [Related]
16. Microdosimetric measurements of radiation quality variations in homogeneous phantoms irradiated by fast neutron beams. Beach JL; Milavickas LR Med Phys; 1982; 9(1):52-9. PubMed ID: 6804771 [TBL] [Abstract][Full Text] [Related]
17. Design of photon converter and photoneutron target for High power electron accelerator based BNCT. Rahmani F; Seifi S; Anbaran HT; Ghasemi F Appl Radiat Isot; 2015 Dec; 106():45-8. PubMed ID: 26278347 [TBL] [Abstract][Full Text] [Related]
18. Microdosimetric investigations on collimated fast-neutron beams for radiation therapy: I. Measurements of microdosimetric spectra and particle dose fractions in a water phantom for fast neutrons from 14 MeV deuterons on beryllium. Fidorra J; Booz J Phys Med Biol; 1981 Jan; 26(1):27-41. PubMed ID: 6264509 [TBL] [Abstract][Full Text] [Related]
19. 150-250 meV electron beams in radiation therapy. DesRosiers C; Moskvin V; Bielajew AF; Papiez L Phys Med Biol; 2000 Jul; 45(7):1781-805. PubMed ID: 10943919 [TBL] [Abstract][Full Text] [Related]
20. Dose properties of a laser accelerated electron beam and prospects for clinical application. Kainz KK; Hogstrom KR; Antolak JA; Almond PR; Bloch CD; Chiu C; Fomytskyi M; Raischel F; Downer M; Tajima T Med Phys; 2004 Jul; 31(7):2053-67. PubMed ID: 15305458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]