BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

26 related articles for article (PubMed ID: 7210224)

  • 1. The malate shuttle detoxifies ammonia in exhausted T cells by producing 2-ketoglutarate.
    Weisshaar N; Ma S; Ming Y; Madi A; Mieg A; Hering M; Zettl F; Mohr K; Ten Bosch N; Stichling D; Buettner M; Poschet G; Klinke G; Schulz M; Kunze-Rohrbach N; Kerber C; Klein IM; Wu J; Wang X; Cui G
    Nat Immunol; 2023 Nov; 24(11):1921-1932. PubMed ID: 37813964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Role of the oxidation-reduction state and phosphate potential in regulating rat liver gluconeogenesis during inclusion of 1,3-butanediol in the diet].
    Velikiĭ NN; Parkhomets PK; Turganbaeva TM; Chichkovskaia GV; Mogilevich SE
    Vopr Med Khim; 1977; (6):723-8. PubMed ID: 202084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of gluconeogenesis and lipogenesis. The regulation of mitochondrial pyruvate metabolism in guinea-pig liver synthesizing precursors for gluconeogenesis.
    Somberg EW; Mehlman MA
    Biochem J; 1969 May; 112(4):435-47. PubMed ID: 5801676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of oxalacetate metabolism in liver mitochondria. Evidence for nicotinamide adenine dinucleotide-malate dehydrogenase equilibrium and the role of phosphoenolpyruvate carboxykinase in the control of oxalacetate metabolism in intact guinea pig and rat liver mitochondria.
    Garber AJ; Salganicoff L
    J Biol Chem; 1973 Mar; 248(5):1520-9. PubMed ID: 4144388
    [No Abstract]   [Full Text] [Related]  

  • 5. Phenethylbiguanide and the inhibition of hepatic gluconeogenesis in the guinea pig.
    Ogata K; Jomain-Baum M; Hanson RW
    Biochem J; 1974 Oct; 144(1):49-57. PubMed ID: 4462575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of phosphoenolpyruvate metabolism in mitochondria from guinea pig liver.
    Garber AJ; Ballard FJ
    J Biol Chem; 1970 May; 245(9):2229-40. PubMed ID: 4315147
    [No Abstract]   [Full Text] [Related]  

  • 7. [Redox state of free nicotinamide coenzymes and phosphoenolpyruvate synthesis in rat and guinea pig liver].
    Velikiĭ NN; Kuchmerovskaia TM; Parkhomets PK
    Ukr Biokhim Zh (1978); 1981; 53(1):60-6. PubMed ID: 7210224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoenolpyruvate carboxykinase. I. Its role in gluconeogenesis.
    Hanson RW; Garber AJ
    Am J Clin Nutr; 1972 Oct; 25(10):1010-21. PubMed ID: 4342753
    [No Abstract]   [Full Text] [Related]  

  • 9. Compartmentation in relation to metabolic control in liver.
    Gumaa KA; McLean P; Greenbaum AL
    Essays Biochem; 1971; 7():39-86. PubMed ID: 4399907
    [No Abstract]   [Full Text] [Related]  

  • 10. The role of mitochondrial tricarboxylate anion transport in metabolism.
    Robinson BH
    Symp Soc Exp Biol; 1973; 27():195-214. PubMed ID: 4588143
    [No Abstract]   [Full Text] [Related]  

  • 11. Prooxidant activity of fisetin: effects on energy metabolism in the rat liver.
    Constantin RP; Constantin J; Pagadigorria CL; Ishii-Iwamoto EL; Bracht A; de Castro CV; Yamamoto NS
    J Biochem Mol Toxicol; 2011; 25(2):117-26. PubMed ID: 20957679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hormonal regulation of hepatic gluconeogenesis.
    Kraus-Friedmann N
    Physiol Rev; 1984 Jan; 64(1):170-259. PubMed ID: 6141578
    [No Abstract]   [Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.