These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 721114)

  • 1. Changes in calcium precipitation & electromigratory pattern of sarcoplasmic proteins in denervation atrophy of amphibian gastrocnemius muscle.
    Narayanareddy K; Florence MK; Swami KS
    Indian J Biochem Biophys; 1978 Feb; 15(1):71-3. PubMed ID: 721114
    [No Abstract]   [Full Text] [Related]  

  • 2. Changes in electromigratory pattern of Ca2+ in denervation atrophy of amphibian gastrocnemius muscle.
    Reddy MN; Indira K; Swami KS
    Indian J Exp Biol; 1979 Dec; 17(12):1392-3. PubMed ID: 540993
    [No Abstract]   [Full Text] [Related]  

  • 3. Electromigratory pattern of the protein components in normal & denervated gastrocnemius muscles of frog.
    Dass PM; Swami KS
    Indian J Exp Biol; 1971 Apr; 9(2):190-4. PubMed ID: 5092733
    [No Abstract]   [Full Text] [Related]  

  • 4. Calcium binding capacity and calcium sensitive protein content in denervated frog muscles.
    Krishnamoorthy RV; Somasekhar T; Begum BJ
    Cell Calcium; 1984 Feb; 5(1):21-7. PubMed ID: 6538815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subcellular protein electromigratory pattern in the denervated amphibian skeletal muscle.
    Reddy NB; Swami KS
    Indian J Exp Biol; 1971 Jan; 9(1):32-5. PubMed ID: 4103661
    [No Abstract]   [Full Text] [Related]  

  • 6. Calcium oxalate-loaded sarcoplasmic reticulum vesicles from developing skeletal muscle are highly differentiated.
    Zubrzycka-Gaarn E; MacLennan DH
    Prog Clin Biol Res; 1988; 252():133-9. PubMed ID: 2964645
    [No Abstract]   [Full Text] [Related]  

  • 7. [Effect of acetycholine on the Ca2+ transport system in sarcoplasmic reticulum of frog skeletal muscle].
    Esyrev OV; Uspanova ZhK
    Vopr Med Khim; 1976; 22(1):21-5. PubMed ID: 1035991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Albumin & gamma-globulin modulation of activity levels of selected dehydrogenases in the denervation atrophy of amphibian gastrocnemius muscle.
    Aruna P; Swami KS
    Indian J Exp Biol; 1978 Feb; 16(2):265-7. PubMed ID: 79552
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of denervation on glycolytic activity of amphibian gastrocnemius muscle.
    Pramilamma Y; Swami KS
    Indian J Exp Biol; 1977 Jun; 15(6):479-80. PubMed ID: 598882
    [No Abstract]   [Full Text] [Related]  

  • 10. Protein interactions within calcium release units of muscle.
    Franzini-Armstrong C; Tijskens P; Jones LR
    J Muscle Res Cell Motil; 2004; 25(8):586-7. PubMed ID: 16285026
    [No Abstract]   [Full Text] [Related]  

  • 11. Distribution of Ca(2+)-modulating proteins in sarcoplasmic reticulum membranes after denervation.
    Lehotský J; Bezáková G; Kaplán P; Raeymaekers L
    Gen Physiol Biophys; 1993 Aug; 12(4):339-48. PubMed ID: 8299929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial resolution and reconstitution of the Ca++ transport system of sarcoplasmic reticulum.
    Mac Lennan DH
    Recent Adv Stud Cardiac Struct Metab; 1974; 4():507-17. PubMed ID: 4283220
    [No Abstract]   [Full Text] [Related]  

  • 13. Free amino acid composition in the denervation atrophy of gastrocnemius muscle of the frog Rana hexadactyla.
    Narayanareddy K; Swami KS
    Indian J Exp Biol; 1975 Jul; 13(4):343-5. PubMed ID: 1205528
    [No Abstract]   [Full Text] [Related]  

  • 14. [Action of acid cathepsins on the myosin and sarcoplasmic proteins of normal and denervated rat muscles].
    Lukashevich EF; Ivanova AG
    Ukr Biokhim Zh; 1976; 48(5):555-8. PubMed ID: 1021907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative surface charges provoke conformational change of membrane proteins and release of calcium from sarcoplasmic reticulum.
    Liu G; Oba T
    Prog Clin Biol Res; 1990; 327():779-84. PubMed ID: 2320630
    [No Abstract]   [Full Text] [Related]  

  • 16. Neural control on the activity of the calcium-transport system in sarcoplasmic reticulum of rat skeletal muscle.
    Margreth A; Salviati G; Carraro U
    Nature; 1973 Jan; 241(5387):285-6. PubMed ID: 4267181
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparison of the sarcoplasmic and myofibrillar proteins of twitch and tonic fibres of frog muscle (Rana esculenta).
    Focant B; Reznik M
    Eur J Cell Biol; 1980 Jun; 21(2):195-9. PubMed ID: 6447068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the nervous system in regulation of the sarcoplasmic membrane function in different muscle fibres.
    Heiner L; Domonkos J; Motika D; Vargha M
    Acta Physiol Hung; 1984; 64(2):129-33. PubMed ID: 6496128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proceedings: Release and uptake of calcium by the sarcoplasmic reticulum.
    Hasselbach W
    Hoppe Seylers Z Physiol Chem; 1975 Apr; 356(4):379-80. PubMed ID: 1150146
    [No Abstract]   [Full Text] [Related]  

  • 20. Involvement of protein components in calcium transport.
    Masoro EJ; Yu BP
    Recent Adv Stud Cardiac Struct Metab; 1974; 4():495-506. PubMed ID: 4283219
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.