These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 7212307)

  • 21. Prenatal development of rugae palatinae in mice: scanning electron microscopic and histologic studies.
    Peterková R; Klepácek I; Peterka M
    J Craniofac Genet Dev Biol; 1987; 7(2):169-89. PubMed ID: 3624420
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Medial edge epithelial cell fate during palatal fusion.
    Martínez-Alvarez C; Tudela C; Pérez-Miguelsanz J; O'Kane S; Puerta J; Ferguson MW
    Dev Biol; 2000 Apr; 220(2):343-57. PubMed ID: 10753521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Scanning electron microscope study of the secondary palate during embryonic formation in the rat].
    Baeckeland E; Heinen E
    Bull Assoc Anat (Nancy); 1977 Mar; 61(172):61-70. PubMed ID: 588759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution of glycogen in prefusion human palatal epithelium.
    Meller SM; Barton LH
    Anat Rec; 1979 Apr; 193(4):831-56. PubMed ID: 426309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facial development in normal and mutant chick embryos. I. Scanning electron microscopy of primary palate formation.
    Yee GW; Abbott UK
    J Exp Zool; 1978 Dec; 206(3):307-21. PubMed ID: 712345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrastructural observations on the development of triamcinolone-induced cleft palate in hamsters.
    Shah RM
    Invest Cell Pathol; 1980; 3(3):281-94. PubMed ID: 7429884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A cellular mechanism for the palatal shelf reorientation from a vertical to a horizontal plane in hamster: light and electron microscopic study.
    Shah RM
    J Embryol Exp Morphol; 1979 Oct; 53():1-13. PubMed ID: 575387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracellular coat in developing human palatal processes: electron microscopy and ruthenium red binding.
    Meller SM; Barton LH
    Anat Rec; 1978 Feb; 190(2):223-31. PubMed ID: 75698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The distribution of desmosomes and ruthenium red-bound cell surface carbohydrates during palatal closure in the hamster.
    Shah RM
    Invest Cell Pathol; 1979; 2(4):319-31. PubMed ID: 94323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Terminal differentiation of palatal medial edge epithelial cells in vitro is not necessarily dependent on palatal shelf contact and midline epithelial seam formation.
    Takigawa T; Shiota K
    Int J Dev Biol; 2004 Jun; 48(4):307-17. PubMed ID: 15300511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Active role of embryonic facial epithelium: new evidence of cellular events in morphogenesis.
    Millicovsky G; Johnston MC
    J Embryol Exp Morphol; 1981 Jun; 63():53-66. PubMed ID: 7310294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of cell migration, transdifferentiation and apoptosis during mouse secondary palate fusion.
    Jin JZ; Ding J
    Development; 2006 Sep; 133(17):3341-7. PubMed ID: 16887819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrastructural changes in rat palatal epithelium after beta-aminopropionitrile.
    Mato M; Uchiyama Y; Aikawa E; Smiley GR
    Teratology; 1975 Apr; 11(2):153-67. PubMed ID: 1154281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward the origin of the secondary palate. A possible homologue in the embryo of fish, Onchorhynchus kisutch, with description of changes in the basement membrane area.
    Shah RM; Donaldson EM; Scudder GG
    Am J Anat; 1990 Dec; 189(4):329-38. PubMed ID: 2285041
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TGF-beta(3)-induced chondroitin sulphate proteoglycan mediates palatal shelf adhesion.
    Gato A; Martinez ML; Tudela C; Alonso I; Moro JA; Formoso MA; Ferguson MW; Martínez-Alvarez C
    Dev Biol; 2002 Oct; 250(2):393-405. PubMed ID: 12376112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The normal surface of conjunctiva epithelium. A scanning electron microscopic study.
    Pfister RR
    Invest Ophthalmol; 1975 Apr; 14(4):267-79. PubMed ID: 1167218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Midline fusion in the formation of the secondary palate anticipated by upregulation of keratin K5/6 and localized expression of vimentin mRNA in medial edge epithelium.
    Gibbins JR; Manthey A; Tazawa YM; Scott B; Bloch-Zupan A; Hunter N
    Int J Dev Biol; 1999 May; 43(3):237-44. PubMed ID: 10410903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Ultrastructural analysis of the supralingual growth of the palatine processes in Oryctolagus cuniculus (Burgundy brown rabbit)].
    Bordet G
    J Biol Buccale; 1981 Sep; 9(3):253-70. PubMed ID: 6948804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epithelial bridging of the primary palate: II. In vitro model mimics in vivo behavior.
    Forbes DP; Steffek AJ
    J Craniofac Genet Dev Biol; 1989; 9(4):367-80. PubMed ID: 2634682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Runx1 is involved in the fusion of the primary and the secondary palatal shelves.
    Charoenchaikorn K; Yokomizo T; Rice DP; Honjo T; Matsuzaki K; Shintaku Y; Imai Y; Wakamatsu A; Takahashi S; Ito Y; Takano-Yamamoto T; Thesleff I; Yamamoto M; Yamashiro T
    Dev Biol; 2009 Feb; 326(2):392-402. PubMed ID: 19000669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.