BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7212930)

  • 1. Influence of growth phase and carbon source on the content of rubredoxin in Acinetobacter calcoaceticus.
    Claus R; Asperger O; Kleber HP
    Arch Microbiol; 1980 Dec; 128(2):263-5. PubMed ID: 7212930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Rubredoxin reductase in crude extracts of Acinetobacter calcoaceticus in relation to carbon source and growth phase].
    Claus R; Kleber HP
    Z Allg Mikrobiol; 1982; 22(1):3-15. PubMed ID: 6803449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Quantitative immunological method for determining rubredoxin in crude extracts of Acinetobacter calcoaceticus].
    Claus R; Hädge D; Asperger O; Fiebig H; Kleber HP
    Z Allg Mikrobiol; 1980; 20(2):95-103. PubMed ID: 6246689
    [No Abstract]   [Full Text] [Related]  

  • 4. [Isolation and characterization of rubredoxin from Acinetobacter calcoaceticus].
    Aurich H; Sorger D; Asperger O
    Acta Biol Med Ger; 1976; 35(3-4):443-51. PubMed ID: 970050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two genes encoding proteins with similarities to rubredoxin and rubredoxin reductase are required for conversion of dodecane to lauric acid in Acinetobacter calcoaceticus ADP1.
    Haspel G; Ehrt S; Hillen W
    Microbiology (Reading); 1995 Jun; 141 ( Pt 6)():1425-1432. PubMed ID: 7670642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Properties of rubredoxin reductase from the alkane-assimilating bacterium Acinetobacter calcoaceticus].
    Claus R; Asperger O; Kleber HP
    Z Allg Mikrobiol; 1979; 19(10):695-704. PubMed ID: 44771
    [No Abstract]   [Full Text] [Related]  

  • 7. Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1.
    Tani A; Ishige T; Sakai Y; Kato N
    J Bacteriol; 2001 Mar; 183(5):1819-23. PubMed ID: 11160120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Optimization of culture conditions for Acinetobacter calcoaceticus grown on n-alkanes in a laboratory fermenter].
    Fricke B; Bergmann R; Sorger H; Aurich H
    Z Allg Mikrobiol; 1982; 22(6):365-72. PubMed ID: 7136011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The behaviour of NAD+ and NADH in Acinetobacter calcoaceticus during n-alkane assimilation.
    Aurich H; Seifertová M
    Folia Microbiol (Praha); 1975; 20(2):130-6. PubMed ID: 170172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genes rubA and rubB for alkane degradation in Acinetobacter sp. strain ADP1 are in an operon with estB, encoding an esterase, and oxyR.
    Geissdörfer W; Kok RG; Ratajczak A; Hellingwerf KJ; Hillen W
    J Bacteriol; 1999 Jul; 181(14):4292-8. PubMed ID: 10400587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Uptake of acetate by Acinetobacter calcoaceticus].
    Haferburg D; Kleber HP; Aurich H
    Acta Biol Med Ger; 1977; 36(9):1237-42. PubMed ID: 614747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rubrerythrin from the hyperthermophilic archaeon Pyrococcus furiosus is a rubredoxin-dependent, iron-containing peroxidase.
    Weinberg MV; Jenney FE; Cui X; Adams MW
    J Bacteriol; 2004 Dec; 186(23):7888-95. PubMed ID: 15547260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Hydroxylation of C
    Tsai YF; Luo WI; Chang JL; Chang CW; Chuang HC; Ramu R; Wei GT; Zen JM; Yu SS
    Sci Rep; 2017 Aug; 7(1):8369. PubMed ID: 28827709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid sequence and function of rubredoxin from Desulfovibrio vulgaris Miyazaki.
    Shimizu F; Ogata M; Yagi T; Wakabayashi S; Matsubara H
    Biochimie; 1989; 71(11-12):1171-7. PubMed ID: 2561345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase.
    Coulter ED; Kurtz DM
    Arch Biochem Biophys; 2001 Oct; 394(1):76-86. PubMed ID: 11566030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotransformation of various alkanes using the Escherichia coli expressing an alkane hydroxylase system from Gordonia sp. TF6.
    Fujii T; Narikawa T; Takeda K; Kato J
    Biosci Biotechnol Biochem; 2004 Oct; 68(10):2171-7. PubMed ID: 15502364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and properties of ferredoxin and rubredoxin from Butyribacterium methylotrophicum.
    Saeki K; Jain MK; Shen GJ; Prince RC; Zeikus JG
    J Bacteriol; 1989 Sep; 171(9):4736-41. PubMed ID: 2548997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the prevalence and catalytic activity of rubredoxin-fused alkane monooxygenases (AlkBs).
    Williams SC; Forsberg AP; Lee J; Vizcarra CL; Lopatkin AJ; Austin RN
    J Inorg Biochem; 2021 Jun; 219():111409. PubMed ID: 33752122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic studies of reduction of a 1:1 cytochrome c-flavodoxin complex by free flavin semiquinones and rubredoxin.
    Hazzard JT; Cusanovich MA; Tainer JA; Getzoff ED; Tollin G
    Biochemistry; 1986 Jun; 25(11):3318-28. PubMed ID: 3015203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clostridial rubredoxin.
    Lovenberg W
    Methods Enzymol; 1972; 24():477-80. PubMed ID: 4362293
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.