These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 7213192)

  • 1. [The auditory pathway in guinea pigs. A [14C]2-deoxyglucose study (author's transl)].
    Strutz J; Beck C; Schmidt CL
    Arch Otorhinolaryngol; 1981; 230(1):27-36. PubMed ID: 7213192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential [14C]2-deoxyglucose uptake after deafferentation of the mammalian auditory pathway--a model for examining tinnitus.
    Sasaki CT; Kauer JS; Babitz L
    Brain Res; 1980 Aug; 194(2):511-6. PubMed ID: 7190053
    [No Abstract]   [Full Text] [Related]  

  • 3. Pentobarbital and ketamine alter the pattern of 2-deoxyglucose uptake in the central auditory system of the gerbil.
    Wang ZX; Ryan AF; Woolf NK
    Hear Res; 1987; 27(2):145-55. PubMed ID: 3610843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal substrates involved in processing of communicative acoustic signals in tree shrews: a 2-deoxyglucose study.
    Binz H; Zurhorst C; Zimmermann E; Rahmann H
    Neurosci Lett; 1990 Apr; 112(1):25-30. PubMed ID: 2385359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The central auditory pathway of the gerbil Psammomys obesus: a deoxyglucose study.
    Melzer P
    Hear Res; 1984 Aug; 15(2):187-95. PubMed ID: 6490545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of GABA immunoreactivity in the auditory brainstem of guinea pigs.
    Thompson GC; Cortez AM; Lam DM
    Brain Res; 1985 Jul; 339(1):119-22. PubMed ID: 3896399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calbindin-like immunoreactivity in the central auditory system of the mustached bat, Pteronotus parnelli.
    Zettel ML; Carr CE; O'Neill WE
    J Comp Neurol; 1991 Nov; 313(1):1-16. PubMed ID: 1761747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The origin of the afferent innervation to the inferior colliculus in guinea pig. A horseradish peroxidase study (author's transl)].
    Strutz J
    Arch Otorhinolaryngol; 1980; 228(4):285-94. PubMed ID: 6162443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization of the superior olivary complex in the guinea pig: II. Patterns of projection from the periolivary nuclei to the inferior colliculus.
    Schofield BR; Cant NB
    J Comp Neurol; 1992 Mar; 317(4):438-55. PubMed ID: 1578006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deoxyglucose demonstration of in-utero hearing in the guinea pig foetus.
    Horner KC; Serviere J; Granier-Deferre C
    Hear Res; 1987; 26(3):327-33. PubMed ID: 3583933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topographical organization of the inferior collicular projection and other connections of the ventral nucleus of the lateral lemniscus in the cat.
    Whitley JM; Henkel CK
    J Comp Neurol; 1984 Oct; 229(2):257-70. PubMed ID: 6501602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projections of the trapezoid body and the superior olivary complex of the Kangaroo rat (Dipodomys merriami).
    Browner RH; Webster DB
    Brain Behav Evol; 1975; 11(5-6):322-54. PubMed ID: 1192176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Descending auditory pathways: projections from the inferior colliculus contact superior olivary cells that project bilaterally to the cochlear nuclei.
    Schofield BR; Cant NB
    J Comp Neurol; 1999 Jun; 409(2):210-23. PubMed ID: 10379915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurotransmitter-specific uptake and retrograde transport of [3H]glycine from the inferior colliculus by ipsilateral projections of the superior olivary complex and nuclei of the lateral lemniscus.
    Saint Marie RL; Baker RA
    Brain Res; 1990 Aug; 524(2):244-53. PubMed ID: 1705464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unbiased stereological estimates of neuron number in subcortical auditory nuclei of the rat.
    Kulesza RJ; Viñuela A; Saldaña E; Berrebi AS
    Hear Res; 2002 Jun; 168(1-2):12-24. PubMed ID: 12117505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retrograde transport of [3H]glycine from the cochlear nucleus to the superior olive in the guinea pig.
    Benson CG; Potashner SJ
    J Comp Neurol; 1990 Jun; 296(3):415-26. PubMed ID: 2358545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning-related activation in the auditory system of the rat produced by long-term habituation: a 2-deoxyglucose study.
    Gonzalez-Lima F; Finkenstädt T; Ewert JP
    Brain Res; 1989 Jun; 489(1):67-79. PubMed ID: 2743154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in [14C]-2-deoxyglucose uptake in the auditory pathway of hamsters previously exposed to intense sound.
    Zhang JS; Kaltenbach JA; Wang J; Bronchti G
    Hear Res; 2003 Nov; 185(1-2):13-21. PubMed ID: 14599688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation-induced [14C]2-deoxyglucose labeling of synaptic activity in the central auditory system.
    Nudo RJ; Masterton RB
    J Comp Neurol; 1986 Mar; 245(4):553-65. PubMed ID: 3009561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tonotopic organization in the central auditory pathway of the Mongolian gerbil: a 2-deoxyglucose study.
    Ryan AF; Woolf NK; Sharp FR
    J Comp Neurol; 1982 Jun; 207(4):369-80. PubMed ID: 7119149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.