These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 7213613)
1. Tryptophanyl fluorescence heterogeneity of apomyoglobins. Correlation with the presence of two distinct structural domains. Irace G; Balestrieri C; Parlato G; Servillo L; Colonna G Biochemistry; 1981 Feb; 20(4):792-9. PubMed ID: 7213613 [TBL] [Abstract][Full Text] [Related]
2. Heme and cysteine microenvironments of tuna apomyoglobin. Evidence of two independent unfolding regions. Colonna G; Balestrieri C; Bismuto E; Servillo L; Irace G Biochemistry; 1982 Jan; 21(2):212-5. PubMed ID: 7074010 [TBL] [Abstract][Full Text] [Related]
3. Effect of unfolding on the tryptophanyl fluorescence lifetime distribution in apomyoglobin. Bismuto E; Gratton E; Irace G Biochemistry; 1988 Mar; 27(6):2132-6. PubMed ID: 3378049 [TBL] [Abstract][Full Text] [Related]
4. Fluorescence study of the conformational properties of myoglobin structure. 3. pH-dependent changes in porphyrin and tryptophan fluorescence of the complex of sperm whale apomyoglobin with protoporphyrin IX; the role of the porphyrin macrocycle and iron in formation of native myoglobin structure. Postnikova GB; Yumakova EM Eur J Biochem; 1991 May; 198(1):241-6. PubMed ID: 2040285 [TBL] [Abstract][Full Text] [Related]
5. Tryptophanyl contributions to apomyoglobin fluorescence resolved by site-directed mutagenesis. Sirangelo I; Tavassi S; Irace G Biochim Biophys Acta; 2000 Feb; 1476(2):173-80. PubMed ID: 10669783 [TBL] [Abstract][Full Text] [Related]
6. Multisite fluorescence in proteins with multiple tryptophan residues. Apomyoglobin natural variants and site-directed mutants. Tcherkasskaya O; Bychkova VE; Uversky VN; Gronenborn AM J Biol Chem; 2000 Nov; 275(46):36285-94. PubMed ID: 10948189 [TBL] [Abstract][Full Text] [Related]
7. Fluorescence study of the conformational properties of myoglobin structure. 1. pH-dependent changes of tryptophanyl fluorescence in intact and chemically modified sperm whale apomyoglobins. Postnikova GB; Komarov YE; Yumakova EM Eur J Biochem; 1991 May; 198(1):223-32. PubMed ID: 2040283 [TBL] [Abstract][Full Text] [Related]
8. Resolution of the individual tryptophanyl contributions to the near-ultraviolet dichroic activity of apomyoglobin. Sirangelo I; Irace G; Bismuto E Photochem Photobiol; 1994 Jun; 59(6):611-4. PubMed ID: 8066120 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of ANS binding to tuna apomyoglobin measured with fluorescence correlation spectroscopy. Bismuto E; Gratton E; Lamb DC Biophys J; 2001 Dec; 81(6):3510-21. PubMed ID: 11721012 [TBL] [Abstract][Full Text] [Related]
10. The effect of evolution on homologous proteins: a comparison between the chromophore microenvironments of Italian water buffalo (Bos bubalus, L.) and sperm whale apomyoglobin. Colonna G; Irace G; Parlato G; Aloj SM; Balestrieri C Biochim Biophys Acta; 1978 Feb; 532(2):354-67. PubMed ID: 23858 [TBL] [Abstract][Full Text] [Related]
11. Multiple conformational states in myoglobin revealed by frequency domain fluorometry. Bismuto E; Irace G; Gratton E Biochemistry; 1989 Feb; 28(4):1508-12. PubMed ID: 2719914 [TBL] [Abstract][Full Text] [Related]
12. Equilibrium evidence of non-single step transition during guanidine unfolding of apomyoglobins. Balestrieri C; Colonna G; Giovane A; Irace G; Servillo L FEBS Lett; 1976 Jul; 66(1):60-4. PubMed ID: 1278441 [No Abstract] [Full Text] [Related]
13. Unfolding pathway of myoglobin: effect of denaturants on solvent accessibility to tyrosyl residues detected by second-derivative spectroscopy. Ragone R; Colonna G; Bismuto E; Irace G Biochemistry; 1987 Apr; 26(8):2130-4. PubMed ID: 3620442 [TBL] [Abstract][Full Text] [Related]
14. The stabilities of mammalian apomyoglobins vary over a 600-fold range and can be enhanced by comparative mutagenesis. Scott EE; Paster EV; Olson JS J Biol Chem; 2000 Sep; 275(35):27129-36. PubMed ID: 10852902 [TBL] [Abstract][Full Text] [Related]
15. Nanosecond dynamics of tryptophans in different conformational states of apomyoglobin proteins. Tcherkasskaya O; Ptitsyn OB; Knutson JR Biochemistry; 2000 Feb; 39(7):1879-89. PubMed ID: 10677239 [TBL] [Abstract][Full Text] [Related]
16. Pressure-induced perturbation of apomyoglobin structure: fluorescence studies on native and acidic compact forms. Bismuto E; Sirangelo I; Irace G; Gratton E Biochemistry; 1996 Jan; 35(4):1173-8. PubMed ID: 8573571 [TBL] [Abstract][Full Text] [Related]
17. Time-resolved fluorescence studies of the molten globule state of apomyoglobin. Rischel C; Thyberg P; Rigler F; Poulsen FM J Mol Biol; 1996 Apr; 257(4):877-85. PubMed ID: 8636988 [TBL] [Abstract][Full Text] [Related]
18. [pH-dependent changes in the tryptophan and porphyrin fluorescence of the apomyoglobin complex with protoporphyrin IX and methemoglobin]. Postnikova GB; Iumakova EM; Vekshin NL Biokhimiia; 1986 Feb; 51(2):313-20. PubMed ID: 3697414 [TBL] [Abstract][Full Text] [Related]
20. Local phenomena and distribution of molecular species during the unfolding of heme-free myoglobin in the presence of GdnHCl and urea as seen by time-resolved fluorescence spectroscopy. Fronticelli C; Bucci E; Malak H Biophys Chem; 1989 May; 33(2):143-51. PubMed ID: 2752093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]