These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7213722)

  • 1. Hexose transport in Novikoff rat hepatoma cells. A simple carrier with directional symmetry, but variable relative mobilities of loaded and empty carrier.
    Graff JC; Wohlhueter RM; Plagemann PG
    Biochim Biophys Acta; 1981 Mar; 641(2):320-33. PubMed ID: 7213722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broad specificity hexose transport system with differential mobility of loaded and empty carrier, but directional symmetry, is common property of mammalian cell lines.
    Plagemann PG; Wohlhueter RM; Graff J; Erbe J; Wilkie P
    J Biol Chem; 1981 Mar; 256(6):2835-42. PubMed ID: 7204377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of temperature on kinetics and symmetries of the hexose transporter of Novikoff rat hepatoma cells.
    Plagemann PG; Wohlhueter RM; Erbe J; Wilkie P
    Biochemistry; 1981 Jun; 20(12):3366-70. PubMed ID: 7260041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The simple model of adipocyte hexose transport. Kinetic features, effect of insulin, and network thermodynamic computer simulations.
    May JM; Mikulecky DC
    J Biol Chem; 1982 Oct; 257(19):11601-8. PubMed ID: 6749843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hypoxanthine transporter of Novikoff rat hepatoma cells exhibits directional symmetry and equal mobility when empty or substrate-loaded.
    Plagemann PG; Wohlhueter RM
    Biochim Biophys Acta; 1982 Jun; 688(2):505-14. PubMed ID: 7104338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deoxyglucose and 3-O-methylglucose transport in untreated and ATP-depleted Novikoff rat hepatoma cells. Analysis by a rapid kinetic technique, relationship to phosphorylation and effects of inhibitors.
    Graff JC; Wohlhueter RM; Plagemann PG
    J Cell Physiol; 1978 Aug; 96(2):171-88. PubMed ID: 670303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hexose transport and phosphorylation by Novikoff rat hepatoma cells as function of extracellular pH.
    Wohlhueter RM; Plagemann PG
    J Biol Chem; 1981 Jan; 256(2):869-75. PubMed ID: 7451478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleoside transport in human erythrocytes. A simple carrier with directional symmetry and differential mobility of loaded and empty carrier.
    Plagemann PG; Wohlhueter RM; Erbe J
    J Biol Chem; 1982 Oct; 257(20):12069-74. PubMed ID: 7118930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the functional symmetry of nucleoside transport in mammalian cells.
    Wohlhueter RM; Plagemann PG
    Biochim Biophys Acta; 1982 Jul; 689(2):249-60. PubMed ID: 7115709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hexose transport in L6 rat myoblasts. II. The effects of sulfhydryl reagents.
    D'Amore T; Lo TC
    J Cell Physiol; 1986 Apr; 127(1):106-13. PubMed ID: 3007535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring hexose transport in suspended cells.
    Gliemann J
    Methods Enzymol; 1989; 173():616-34. PubMed ID: 2674621
    [No Abstract]   [Full Text] [Related]  

  • 12. Transport of glucose and fructose in rat hepatocytes at 37 degrees C.
    Okuno Y; Gliemann J
    Biochim Biophys Acta; 1986 Nov; 862(2):329-34. PubMed ID: 3778895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of 3-O-methyl-D-glucose transport in isolated rat hepatocytes.
    Craik JD; Elliott KR
    Biochem J; 1979 Aug; 182(2):503-8. PubMed ID: 508295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active renal hexose transport. Structural requirements.
    Kleinzeller A; McAvoy EM; McKibbin RD
    Biochim Biophys Acta; 1980 Aug; 600(2):513-29. PubMed ID: 7407126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of blood-brain transport of hexoses.
    Pardridge WM; Oldendorf WH
    Biochim Biophys Acta; 1975 Mar; 382(3):377-92. PubMed ID: 1125240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding sites.
    Klip A; Logan WJ; Li G
    Biochim Biophys Acta; 1982 May; 687(2):265-80. PubMed ID: 7093257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexose transport and phosphorylation by capillaries isolated from rat brain.
    Betz AL; Csejtey J; Goldstein GW
    Am J Physiol; 1979 Jan; 236(1):C96-102. PubMed ID: 434144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetic analysis of hexose transport in cultured human lymphocytes (IM-9).
    Rees WD; Gliemann J
    Biochim Biophys Acta; 1985 Jan; 812(1):98-106. PubMed ID: 4038456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of 3-O-methyl glucose transport in red blood cells of newborn pigs.
    Zeidler RB; Lee P; Kim HD
    J Gen Physiol; 1976 Jan; 67(1):67-80. PubMed ID: 173790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleoside transporter of pig erythrocytes. Kinetic properties, isolation and reaction with nitrobenzylthioinosine and dipyridamole.
    Woffendin C; Plagemann PG
    Biochim Biophys Acta; 1987 Sep; 903(1):18-30. PubMed ID: 3651452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.