These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 7214015)

  • 1. [Correlation between electroencephalogram rhythms and periodic gastric motility in fasting dogs].
    Lebedev NN; Dvukhsherstnov SD
    Biull Eksp Biol Med; 1981; 91(1):8-11. PubMed ID: 7214015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Electrical activity of the cerebral cortex in fasting dogs with preserved and disordered gastric innervation].
    Lebedev NN; Bogdanova TB
    Biull Eksp Biol Med; 1984 May; 97(5):536-9. PubMed ID: 6722323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortico-visceral interrelationships during periodic activity of the stomach.
    Lebedev NN
    Neurosci Behav Physiol; 1984; 14(5):385-95. PubMed ID: 6483185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-invasive electrocologram: correlation between the electrical activity of the dog colonic muscle wall recorded by cutaneous and implanted electrodes.
    Noeva A; Gurkov P; Penchev P; Atanassova E
    Acta Physiol Pharmacol Bulg; 1996; 22(3-4):77-81. PubMed ID: 9715285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship of fasting gastroduodenal motility to the sleep cycle.
    Finch PM; Ingram DM; Henstridge JD; Catchpole BN
    Gastroenterology; 1982 Sep; 83(3):605-12. PubMed ID: 7095364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effects of sildenafil on gastric motility and gastric slow waves in dogs.
    Zhu H; Xu X; Chen JD
    Neurogastroenterol Motil; 2007 Mar; 19(3):218-24. PubMed ID: 17300292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cutaneous gastric electrical stimulation alters gastric motility in dogs: New option for gastric electrical stimulation?
    Yin J; Ouyang H; Wang Z; Chen JD
    J Gastroenterol Hepatol; 2009 Jan; 24(1):149-54. PubMed ID: 18823433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Hormonal component of the postprandial motility response of the proximal stomach in dogs].
    Schang JC; Kelly KA
    C R Seances Soc Biol Fil; 1981; 175(2):253-8. PubMed ID: 6454473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Electrical activity of the subcortical structures and the cerebral cortex in hunger].
    Vasilevskaia LS; Zhuravlev BV
    Vopr Pitan; 1983; (4):57-61. PubMed ID: 6624006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of cholecystokinin peptides on ovine duodeno-jejunal slow waves with and without pretreatment with proglumide.
    RomaƄski KW
    J S Afr Vet Assoc; 2007 Dec; 78(4):209-14. PubMed ID: 18507220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous nitrergic pathway involved in the regulation of gastric myoelectrical activity in dogs.
    Sun Y; Hou X; Chen JDz
    Scand J Gastroenterol; 2009; 44(4):408-14. PubMed ID: 19085208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide and the interrelation between intestinal motility and pancreatic secretion in fasted and fed dogs.
    Maczka M; Thor P; Bilski J; Konturek SJ
    J Physiol Pharmacol; 1994 Jun; 45(2):285-98. PubMed ID: 7949237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of enhanced viscosity on canine gastric and intestinal motility.
    Xu X; Brining D; Rafiq A; Hayes J; Chen JD
    J Gastroenterol Hepatol; 2005 Mar; 20(3):387-94. PubMed ID: 15740481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of gastric electrical stimulation on canine gastric slow waves.
    Xing J; Brody F; Rosen M; Chen JD; Soffer E
    Am J Physiol Gastrointest Liver Physiol; 2003 Jun; 284(6):G956-62. PubMed ID: 12584109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral power time-courses of human sleep EEG reveal a striking discontinuity at approximately 18 Hz marking the division between NREM-specific and wake/REM-specific fast frequency activity.
    Merica H; Fortune RD
    Cereb Cortex; 2005 Jul; 15(7):877-84. PubMed ID: 15459085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association between gastric electromechanical activity and satiation in dogs.
    Sanmiguel CP; Aviv R; Policker S; Haddad W; Brody F; Soffer EE
    Obesity (Silver Spring); 2007 Dec; 15(12):2958-63. PubMed ID: 18198304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis and modeling of time-variant amplitude-frequency couplings of and between oscillations of EEG bursts.
    Witte H; Putsche P; Hemmelmann C; Schelenz C; Leistritz L
    Biol Cybern; 2008 Aug; 99(2):139-57. PubMed ID: 18688638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of putative neurotransmitters in the regulation of gastric and intestinal slow waves in conscious dogs.
    Liu S; Xu J; Chen JDz
    J Gastroenterol Hepatol; 2007 Jul; 22(7):1044-50. PubMed ID: 17608850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system.
    Lammers WJ; Ver Donck L; Stephen B; Smets D; Schuurkes JA
    Am J Physiol Gastrointest Liver Physiol; 2009 Jun; 296(6):G1200-10. PubMed ID: 19359425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian patterns of gastric electrical and mechanical activity in dogs.
    Aviv R; Policker S; Brody F; Bitton O; Haddad W; Kliger A; Sanmiguel CP; Soffer EE
    Neurogastroenterol Motil; 2008 Jan; 20(1):63-8. PubMed ID: 17931337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.