BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 7214331)

  • 1. Effect of Griseofulvin on 5-aminolevulinate synthase and on ferrochelatase in mouse liver neoplastic nodules.
    Denk H; Kalt R; Abdelfattach-Gad M; Meyer UA
    Cancer Res; 1981 Apr; 41(4):1535-8. PubMed ID: 7214331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Experimental protoporphyria and hepatoma].
    Denk H; Eckerstorfer R
    Verh Dtsch Ges Pathol; 1978; 62():358. PubMed ID: 218386
    [No Abstract]   [Full Text] [Related]  

  • 3. The influence of actinomycin D on the activity of delta-aminolaevulinic acid synthetase and dehydratase in the liver of mice and rats treated by griseofulvin.
    Erban J; Janousek V
    Physiol Bohemoslov; 1977; (2):173-8. PubMed ID: 140391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the effects of griseofulvin and 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine on ferrochelatase activity in chick embryo liver.
    Cole SP; Zelt DT; Marks GS
    Mol Pharmacol; 1981 May; 19(3):477-80. PubMed ID: 7266472
    [No Abstract]   [Full Text] [Related]  

  • 5. Enzymatic formation of zinc-protoporphyrin by rat liver and its potential effect on hepatic heme metabolism.
    Bloomer JR; Reuter RJ; Morton KO; Wehner JM
    Gastroenterology; 1983 Sep; 85(3):663-8. PubMed ID: 6873612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Interrelation of the morphofunctional characteristics of the erythron and heme-synthesizing enzyme activity during heat exposure].
    Varypaeva LP; Zakharov IuM
    Fiziol Zh SSSR Im I M Sechenova; 1985 May; 71(5):625-30. PubMed ID: 4018296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of porphyrin-inducing drugs on ferrochelatase activity in isolated mouse hepatocytes.
    Cole SP; Massey TE; Marks GS; Racz WJ
    Can J Physiol Pharmacol; 1981 Nov; 59(11):1155-8. PubMed ID: 7317839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxic effects of griseofulvin: disease models, mechanisms, and risk assessment.
    Knasmüller S; Parzefall W; Helma C; Kassie F; Ecker S; Schulte-Hermann R
    Crit Rev Toxicol; 1997 Sep; 27(5):495-537. PubMed ID: 9347226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heme biosynthesis in Friend erythroleukemia cells: control by ferrochelatase.
    Rutherford T; Thompson GG; Moore MR
    Proc Natl Acad Sci U S A; 1979 Feb; 76(2):833-6. PubMed ID: 284406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of griseofulvin on the heme pathway--II. An exhaustive analysis during short and long-term challenge.
    Navone NM; Buzaleh AM; Polo CF; Afonso SG; Vázquez ES; Batlle AM
    Gen Pharmacol; 1991; 22(6):1179-83. PubMed ID: 1810812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of mRNA levels of delta-aminolevulinic acid synthase, ferrochelatase and heme oxygenase-1 in griseofulvin induced protoporphyria mice.
    Inafuku K; Takamiyagi A; Oshiro M; Kinjo T; Nakashima Y; Nonaka S
    J Dermatol Sci; 1999 Apr; 19(3):189-98. PubMed ID: 10215191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Labelling in vivo and chirality of griseofulvin-derived N-alkylated protoporphyrins.
    De Matteis F; Gibbs AH; Martin SR; Milek RL
    Biochem J; 1991 Dec; 280 ( Pt 3)(Pt 3):813-6. PubMed ID: 1764043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of decreased ferrochelatase activity on iron and porphyrin content in mitochondria of mice with porphyria induced by griseofulvin.
    Tangerås A
    Biochim Biophys Acta; 1986 Jun; 882(1):77-84. PubMed ID: 3707999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of ferrochelatase and accumulation of porphyrins in mouse hepatocyte cultures exposed to porphyrinogenic chemicals.
    Brady AM; Lock EA
    Arch Toxicol; 1992; 66(3):175-81. PubMed ID: 1497480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain and sex differences in the response of mice to drugs that induce protoporphyria: role of porphyrin biosynthesis and removal.
    Holley A; King LJ; Gibbs AH; De Matteis F
    J Biochem Toxicol; 1990; 5(3):175-82. PubMed ID: 2283668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome P450 and its interactions with the heme biosynthetic pathway.
    De Matteis F; Marks GS
    Can J Physiol Pharmacol; 1996 Jan; 74(1):1-8. PubMed ID: 8963944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NTP technical report on the toxicity studies of Dibutyl Phthalate (CAS No. 84-74-2) Administered in Feed to F344/N Rats and B6C3F1 Mice.
    Marsman D
    Toxic Rep Ser; 1995 Apr; 30():1-G5. PubMed ID: 12209194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsomal mixed-function oxidase and activities of some related enzymes in hyperplastic nodules induced by long-term griseofulvin administration in mouse liver.
    Denk H; Abdelfattah-Gad M; Eckerstorfer R; Talcott RE
    Cancer Res; 1980 Jul; 40(7):2568-73. PubMed ID: 7388813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suicidal destruction of cytochrome P-450 and reduction of ferrochelatase activity by 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine and its analogues in chick embryo liver cells.
    Marks GS; Allen DT; Johnston CT; Sutherland EP; Nakatsu K; Whitney RA
    Mol Pharmacol; 1985 Apr; 27(4):459-65. PubMed ID: 3982391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The in vitro effects of selected environmental toxicants on two heme synthesis enzymes.
    Johnson DJ; Williams HL; Slater S; Haut MJ; Altstatt LB
    J Environ Pathol Toxicol Oncol; 1985; 6(2):211-8. PubMed ID: 4078689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.