BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7214604)

  • 1. Characterization of 2,3-bis(chloromethyl)-1,4-naphthoquinone induced mitochondrial swelling.
    Pardini RS; Tilka MA; Pritsos CA; Lin AJ; Sartorelli AC
    Chem Biol Interact; 1981 May; 35(2):241-53. PubMed ID: 7214604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mode of action of the bioreductive alkylating agent, 2,3-bis(chloromethyl)-1,4-naphthoquinone.
    Cosby LA; Pardini RS; Biagini RE; Lambert TL; Lin AJ; Huang YM; Hwang KM; Sartorelli AC
    Cancer Res; 1976 Nov; 36(11 Pt 1):4023-31. PubMed ID: 184923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A redox cycling mechanism of action for 2,3-dichloro-1,4-naphthoquinone with mitochondrial membranes and the role of sulfhydryl groups.
    Pritsos CA; Pardini RS
    Biochem Pharmacol; 1984 Dec; 33(23):3771-7. PubMed ID: 6508833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the bioreductive alkylating agent 2,3-bis(chloromethyl)-1,4-naphthoquinone on coupled mitochondria isolated from sarcoma 180 ascites cells.
    Biagini RE; Pardini RS; Lin AJ; Sartorelli AC
    Cancer Biochem Biophys; 1979; 3(3):129-34. PubMed ID: 162226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benzoquinone inhibits the voltage-dependent induction of the mitochondrial permeability transition caused by redox-cycling naphthoquinones.
    Palmeira CM; Wallace KB
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):338-47. PubMed ID: 9144450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the effects on mitochondrial function of a series of 2-methyl substituted 1,4-naphthoquinones to their 6-methyl counterparts.
    Pisani DE; Pointon MJ; Pardini RS
    Biochem Pharmacol; 1986 Aug; 35(15):2587-91. PubMed ID: 3741461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benzoyl peroxide interaction with mitochondria: inhibition of respiration and induction of rapid, large-amplitude swelling.
    Kennedy CH; Winston GW; Church DF; Pryor WA
    Arch Biochem Biophys; 1989 Jun; 271(2):456-70. PubMed ID: 2730001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3,5,3'-triiodothyronine induces mitochondrial permeability transition mediated by reactive oxygen species and membrane protein thiol oxidation.
    Castilho RF; Kowaltowski AJ; Vercesi AE
    Arch Biochem Biophys; 1998 Jun; 354(1):151-7. PubMed ID: 9633610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of the mitochondrial inner membrane permeability by sulfhydryl groups.
    Lê-Quôc K; Lê-Quôc D
    Arch Biochem Biophys; 1982 Jul; 216(2):639-51. PubMed ID: 7114855
    [No Abstract]   [Full Text] [Related]  

  • 10. The formation of active oxygen species following activation of 1-naphthol, 1,2- and 1,4-naphthoquinone by rat liver microsomes.
    Thornalley PJ; Doherty MD; Smith MT; Bannister JV; Cohen GM
    Chem Biol Interact; 1984 Feb; 48(2):195-206. PubMed ID: 6321045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The inhibition by a series of potentially bioreductive naphthoquinones of rat liver mitochondria and sarcoma 180 tumor cell respiration.
    Biagini RE; Tilka MA; Pardini RS
    Res Commun Chem Pathol Pharmacol; 1981 Aug; 33(2):293-304. PubMed ID: 7302377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal and hepatic mitochondrial effects of diuretics in the rat.
    Sawa H; Weinman EJ; Hyde SE; Eknoyan G
    Biochem Pharmacol; 1976 Dec; 25(23):2649-55. PubMed ID: 985585
    [No Abstract]   [Full Text] [Related]  

  • 13. Relation between the activities reducing disulfides and the protection against membrane permeability transition in rat liver mitochondria.
    Wudarczyk J; Debska G; Lenartowicz E
    Arch Biochem Biophys; 1996 Mar; 327(2):215-21. PubMed ID: 8619605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitors of mitochondrial phosphate transport.
    Fonyó A
    Pharmacol Ther; 1979; 7(3):627-45. PubMed ID: 392565
    [No Abstract]   [Full Text] [Related]  

  • 15. Reactive oxygen species induce swelling and cytochrome c release but not transmembrane depolarization in isolated rat brain mitochondria.
    Galindo MF; Jordán J; González-García C; Ceña V
    Br J Pharmacol; 2003 Jun; 139(4):797-804. PubMed ID: 12813003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mangiferin, a natural occurring glucosyl xanthone, increases susceptibility of rat liver mitochondria to calcium-induced permeability transition.
    Andreu GL; Delgado R; Velho JA; Curti C; Vercesi AE
    Arch Biochem Biophys; 2005 Jul; 439(2):184-93. PubMed ID: 15979560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of alpha-tocopherol on doxorubicin-induced lipid peroxidation, swelling and thiol depletion in rat heart mitochondria.
    Geetha A
    Indian J Exp Biol; 1993 Mar; 31(3):297-8. PubMed ID: 8500848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One- and two-electron reduction of 2-methyl-1,4-naphthoquinone bioreductive alkylating agents: kinetic studies, free-radical production, thiol oxidation and DNA-strand-break formation.
    Giulivi C; Cadenas E
    Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):21-30. PubMed ID: 8037673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decrease in heart mitochondrial creatine kinase activity due to oxygen free radicals.
    Yuan G; Kaneko M; Masuda H; Hon RB; Kobayashi A; Yamazaki N
    Biochim Biophys Acta; 1992 Nov; 1140(1):78-84. PubMed ID: 1329980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the effect of SH-groups on respiration and swelling of rat heart mitochondria.
    Korotkov SM; Nesterov VP; Ryabchikov NN
    Dokl Biochem Biophys; 2008; 421():171-5. PubMed ID: 18853765
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.