BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7214604)

  • 21. Effects of sesquiterpene lactones on mitochondrial oxidative phosphorylation.
    Narasimham TR; Kim HL; Safe SH
    Gen Pharmacol; 1989; 20(5):681-7. PubMed ID: 2532610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modifications of cardiac contractility by redox cycling alkylating and mixed redox cycling/alkylating quinones.
    Floreani M; Carpenedo F
    J Pharmacol Exp Ther; 1991 Jan; 256(1):243-8. PubMed ID: 1846415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The impairment of mitochondrial function by Triton X-100. A study of mitochondrial respiration and energy-dependent swelling.
    Barbero MC; Prado A; Gurtubay JI; Goñi FM; Macarulla JM
    Rev Esp Fisiol; 1983 Mar; 39(1):97-104. PubMed ID: 6867445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes.
    Gant TW; Rao DN; Mason RP; Cohen GM
    Chem Biol Interact; 1988; 65(2):157-73. PubMed ID: 2835188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ruthenium red-catalyzed degradation of peroxides can prevent mitochondrial oxidative damage induced by either tert-butyl hydroperoxide or inorganic phosphate.
    Meinicke AR; Bechara EJ; Vercesi AE
    Arch Biochem Biophys; 1998 Jan; 349(2):275-80. PubMed ID: 9448715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemical studies of pigments from the pathogenic fungus, Microsporum cookei.
    Ito Y; Kawai K; Nozawa Y
    J Biochem; 1973 Oct; 74(4):805-10. PubMed ID: 4271697
    [No Abstract]   [Full Text] [Related]  

  • 27. Interactions between non-steroidal anti-inflammatory drugs and biological membranes. I. High amplitude pseudo-energized mitochondrial swelling and membrane permeability changes induced by various non-steroidal anti-inflammatory drugs.
    Famaey JP
    Biochem Pharmacol; 1973 Nov; 22(21):2693-705. PubMed ID: 4763604
    [No Abstract]   [Full Text] [Related]  

  • 28. Differential mechanisms of induction of the mitochondrial permeability transition by quinones of varying chemical reactivities.
    Henry TR; Wallace KB
    Toxicol Appl Pharmacol; 1995 Oct; 134(2):195-203. PubMed ID: 7570595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Demonstration of the variations in accessibility or reactivity of mitochondrial SH groups according to the energy status of the mitochondria].
    Le Quoc D; Le Quoc K; Gaudemer Y
    C R Seances Soc Biol Fil; 1977; 171(4):935-41. PubMed ID: 145307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dehydromonocrotaline induces cyclosporine A-insensitive mitochondrial permeability transition/cytochrome c release.
    dos Santos AB; Dorta DJ; Pestana CR; Maioli MA; Curti C; Mingatto FE
    Toxicon; 2009 Jul; 54(1):16-22. PubMed ID: 19285518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hispidulin: antioxidant properties and effect on mitochondrial energy metabolism.
    Dabaghi-Barbosa P; Mariante Rocha A; Franco da Cruz Lima A; Heleno de Oliveira B; Benigna Martinelli de Oliveira M; Gunilla Skare Carnieri E; Cadena SM; Eliane Merlin Rocha M
    Free Radic Res; 2005 Dec; 39(12):1305-15. PubMed ID: 16298860
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thiol oxidation.
    Morin D; Barthélémy S; Zini R; Labidalle S; Tillement JP
    FEBS Lett; 2001 Apr; 495(1-2):131-6. PubMed ID: 11322961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of the naphthoquinone moiety in the biological activities of sakyomicin A.
    Take Y; Sawada M; Kunai H; Inouye Y; Nakamura S
    J Antibiot (Tokyo); 1986 Apr; 39(4):557-63. PubMed ID: 2423491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effect of hypoxenum on bioenergetic processes in mitochondria and the activity of ATP-sensitive potassium channel].
    Murzaeva SV; Abramova MB; Popova II; Gritsenko EN; Mironova GD; Lezhnev EI
    Biofizika; 2010; 55(5):814-21. PubMed ID: 21033347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial bioenergetics as affected by DDT.
    Moreno AJ; Madeira VM
    Biochim Biophys Acta; 1991 Oct; 1060(2):166-74. PubMed ID: 1932040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of primary Cd2+-induced rat liver mitochondria dysfunction: discrete modes of Cd2+ action on calcium and thiol-dependent domains.
    Belyaeva EA; Korotkov SM
    Toxicol Appl Pharmacol; 2003 Oct; 192(1):56-68. PubMed ID: 14554103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stimulation of potassium cycling in mitochondria by long-chain fatty acids.
    Schönfeld P; Gerke S; Bohnensack R; Wojtczak L
    Biochim Biophys Acta; 2003 Jun; 1604(2):125-33. PubMed ID: 12765769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies on the ionophorous antibiotics. XVI. The ionophore-mediated calcium transport and concomitant osmotic swelling of mitochondria.
    Mitani M; Otake N
    J Antibiot (Tokyo); 1978 Sep; 31(9):888-93. PubMed ID: 711630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impairment of the mitochondrial respiratory chain activity in diethylnitrosamine-induced rat hepatomas: possible involvement of oxygen free radicals.
    Boitier E; Merad-Boudia M; Guguen-Guillouzo C; Defer N; Ceballos-Picot I; Leroux JP; Marsac C
    Cancer Res; 1995 Jul; 55(14):3028-35. PubMed ID: 7606723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 1,4-naphthoquinones: from oxidative damage to cellular and inter-cellular signaling.
    Klotz LO; Hou X; Jacob C
    Molecules; 2014 Sep; 19(9):14902-18. PubMed ID: 25232709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.