These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7215340)

  • 41. Investigation of the binding of Ca2+, Mg2+, Mn2+ and K+ to the vitamin D-dependent Ca2+-binding protein from pig duodenum.
    Bryant DT; Andrews P
    Biochem J; 1984 Apr; 219(1):287-92. PubMed ID: 6721858
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calcium-proton and calcium-magnesium antagonisms in calmodulin: microcalorimetric and potentiometric analyses.
    Milos M; Schaer JJ; Comte M; Cox JA
    Biochemistry; 1986 Oct; 25(20):6279-87. PubMed ID: 3790523
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of calmodulin on the phosphoprotein intermediate of Mg2+-dependent Ca2+-stimulated adenosine triphosphatase in human erythrocyte membranes.
    Jeffery DA; Roufogalis BD; Katz S
    Biochem J; 1981 Feb; 194(2):481-6. PubMed ID: 6458281
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ca2+ and its substitutes have two different binding sites and roles in soluble, quinoprotein (pyrroloquinoline-quinone-containing) glucose dehydrogenase.
    Olsthoorn AJ; Otsuki T; Duine JA
    Eur J Biochem; 1997 Jul; 247(2):659-65. PubMed ID: 9266710
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Localization of phosphophoryn in rat incisor dentin using immunocytochemical techniques.
    Rahima M; Tsay TG; Andujar M; Veis A
    J Histochem Cytochem; 1988 Feb; 36(2):153-7. PubMed ID: 3335773
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterisation of the divalent cation channels of the hepatocyte plasma membrane receptor-activated Ca2+ inflow system using lanthanide ions.
    Fernando KC; Barritt GJ
    Biochim Biophys Acta; 1995 Jul; 1268(1):97-106. PubMed ID: 7542927
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phosphorylation of the isolated high-affinity (Ca2+ + Mg2+) ATPase of the human erythrocyte membrane.
    Lichtner R; Wolf HU
    Biochim Biophys Acta; 1980 Jun; 598(3):472-85. PubMed ID: 6104510
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism of Ca2+ transport by Ca2+-Mg2+-ATPase pump: analysis of major states and pathways.
    Haynes DH
    Am J Physiol; 1983 Jan; 244(1):G3-12. PubMed ID: 6129804
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ca2+ binding to chromaffin vesicle matrix proteins: effect of pH, Mg2+, and ionic strength.
    Reiffen FU; Gratzl M
    Biochemistry; 1986 Jul; 25(15):4402-6. PubMed ID: 3756146
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of Mg2+ on hepatic microsomal Ca2+ and Sr2+ transport.
    Fleschner CR; Kraus-Friedmann N
    Eur J Biochem; 1986 Jan; 154(2):313-20. PubMed ID: 2935394
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Divalent cation block and competition between divalent and monovalent cations in the large-conductance K+ channel from Chara australis.
    Laver DR
    J Gen Physiol; 1992 Aug; 100(2):269-300. PubMed ID: 1402783
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Occlusion of divalent cations in the phosphorylated calcium pump of sarcoplasmic reticulum.
    Dupont Y
    Eur J Biochem; 1980 Aug; 109(1):231-8. PubMed ID: 6447598
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase.
    Fukushima Y; Yamada S; Nakao M
    J Biochem; 1984 Feb; 95(2):359-68. PubMed ID: 6325400
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of phosphoprotein on collagen fibril formation in vitro.
    Clarkson BH; McCurdy SP; Gaz D; Hand AR
    Arch Oral Biol; 1993 Sep; 38(9):737-43. PubMed ID: 8240080
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ca2+ and Na+ permeability of high-threshold Ca2+ channels and their voltage-dependent block by Mg2+ ions in chick sensory neurones.
    Carbone E; Lux HD; Carabelli V; Aicardi G; Zucker H
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):1-15. PubMed ID: 9350613
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [The isolation and characterization of dentin phosphoprotein from human dentine].
    Ouyang Y; Li Y; Su Y
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1999 Mar; 34(2):112-5. PubMed ID: 11834176
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of calcium binding to adipocyte plasma membranes.
    McDonald JM; Bruns DE; Jarett L
    J Biol Chem; 1976 Sep; 251(17):5345-51. PubMed ID: 8462
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selective metal ion binding at the calcium-binding sites of the sea urchin extraembryonic coat protein hyalin.
    Robinson JJ
    Biochem Cell Biol; 1989; 67(11-12):808-12. PubMed ID: 2482768
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of the vitamin D-dependent Ca2+-binding sites in rat intestinal Golgi-enriched membrane fractions.
    Walters JR; Weiser MM
    Biochem J; 1984 Mar; 218(2):347-54. PubMed ID: 6712617
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Self-association of calcium and magnesium complexes of dentin phosphophoryn.
    Marsh ME
    Biochemistry; 1989 Jan; 28(1):339-45. PubMed ID: 2706258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.