These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7215434)

  • 41. Relaxation of intestinal smooth muscle and calcium movements.
    Tomiyama A; Takayanagi I; Takagi K
    J Pharm Pharmacol; 1973 Jan; 25(1):65-8. PubMed ID: 4146202
    [No Abstract]   [Full Text] [Related]  

  • 42. Studies on the mechanism of action of various vasodilators.
    Gagnon G; Regoli D; Rioux F
    Br J Pharmacol; 1980 Oct; 70(2):219-27. PubMed ID: 6159029
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Some properties of Ca-binding microsomal subfractions isolated from rabbit colon muscle.
    Nilsson KB; Andersson RG; Mohme-Lundholm E; Lundholm L
    Acta Pharmacol Toxicol (Copenh); 1978 Mar; 42(3):185-93. PubMed ID: 580347
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Studies on the mechanism of action of glucagon in strips of rabbit renal artery.
    Gagnon G; Regoli D; Rioux F
    Br J Pharmacol; 1980 Jul; 69(3):389-96. PubMed ID: 6156733
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Possible reflection of intracellular calcium binding in the divergent pattern of relaxation in rat and rabbit uterus.
    Batra S; Bengtsson B; Popper LD
    Acta Physiol Scand; 1987 Oct; 131(2):309-14. PubMed ID: 3673623
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the oxalate stimulation of ATP-dependent calcium accumulation by smooth muscle subcellular membranes.
    Kwan CY; Grover AK; Triggle CR; Daniel EE
    Biochem Int; 1983 Jun; 6(6):713-22. PubMed ID: 6679732
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Some aspects of calcium uptake by human myometrial mitochondria and microsomes relevant to relaxation.
    Batra S
    Acta Physiol Scand; 1982 Jan; 114(1):91-5. PubMed ID: 7136750
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On the mechanism of papaverine inhibition of the voltage-dependent Ca++ current in isolated smooth muscle cells from the guinea pig trachea.
    Iguchi M; Nakajima T; Hisada T; Sugimoto T; Kurachi Y
    J Pharmacol Exp Ther; 1992 Oct; 263(1):194-200. PubMed ID: 1328605
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The plasma-membrane component is the primary site of action of alloxan on ATP-driven Ca2+ transport in vascular-muscle microsomal fractions.
    Kwan CY
    Biochem J; 1988 Aug; 254(1):293-6. PubMed ID: 3178751
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Relationships between Ca2+ uptake by a microsomal fraction of guinea-pig taenia caecum and its relaxation.
    Tomiyama A; Takayanagi I; Takagi K
    Biochem Pharmacol; 1975 Jan; 24(1):9-12. PubMed ID: 235927
    [No Abstract]   [Full Text] [Related]  

  • 51. Characterization of an ATP-dependent Ca2+ uptake system in mouse pancreatic microsomes.
    Ponnappa BC; Dormer RL; Williams JA
    Am J Physiol; 1981 Feb; 240(2):G122-9. PubMed ID: 6258447
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Methylxanthine and non-xanthine phosphodiesterase inhibitors. Their effects on adenosine uptake and the low Km cyclic AMP phosphodiesterase in intact rat adipocyte.
    Wong EH; Ooi SO
    Biochem Pharmacol; 1985 Aug; 34(16):2891-6. PubMed ID: 2411270
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Augmentation by external Mg ions of beta-adrenoceptor-mediated actions in the longitudinal muscle of rat uterus.
    Maruta K; Osa T
    Br J Pharmacol; 1989 Mar; 96(3):707-17. PubMed ID: 2541849
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Substitution of phosphate for oxalate in the study of calcium accumulation and release by cardiac microsomal fractions.
    Dunnett J; Nayler WG
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():213-8. PubMed ID: 801572
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proceedings: The effects of some drugs on the Ca++-uptake by microsomal fraction from guinea pig taenia coli.
    Tomiyama A; Takayanagi I; Takagi K
    Jpn J Pharmacol; 1974; 24(0):s:144. PubMed ID: 4365085
    [No Abstract]   [Full Text] [Related]  

  • 56. Effects of cyclic AMP and of protein kinase on the calcium uptake by various tracheal smooth muscle organelles.
    Sands H; Mascali J
    Arch Int Pharmacodyn Ther; 1978 Dec; 236(2):180-91. PubMed ID: 218509
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stimulation of Ca2+ uptake by cyclic AMP and protein kinase in sarcoplasmic reticulum-rich and sarcolemma-rich microsomal fractions from rabbit heart.
    Will H; Schirpke B; Wollenberger A
    Acta Biol Med Ger; 1976; 35(5):529-41. PubMed ID: 185862
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of papaverine on cyclic AMP, calcium uptake and force of contraction in isolated guinea-pig auricles.
    Holzmann S; Meinertz T; Nawrath H; Scholz H
    Res Commun Chem Pathol Pharmacol; 1977 Mar; 16(3):443-50. PubMed ID: 191880
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Actions of papaverine, aspaminol and bile salts and intracellular cyclic AMP level.
    Uruno T; Takayanagi I; Tokunaga M; Kubota K; Takagi K
    Jpn J Pharmacol; 1974 Oct; 24(5):681-6. PubMed ID: 4376185
    [No Abstract]   [Full Text] [Related]  

  • 60. Characteristics of calcium transport and binding by rat myometrium plasma membrane subfractions.
    Grover AK; Kwan CY; Crankshaw J; Crankshaw DJ; Garfield RE; Daniel EE
    Am J Physiol; 1980 Sep; 239(3):C66-74. PubMed ID: 6254367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.