These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 7215546)

  • 21. Cyclic AMP- and Ca2+-dependent protein kinases and their concerted effects on Ca2+ fluxes.
    Demaille JG
    Biochem Soc Trans; 1981 Oct; 9(5):380-1. PubMed ID: 6269921
    [No Abstract]   [Full Text] [Related]  

  • 22. Cyclic adenosine monophosphate dependent and independent phosphorylation of sarcolemma membrane proteins in perfused rat heart.
    Walsh DA; Clippinger MS; Sivaramakrishnan S; McCullough TE
    Biochemistry; 1979 Mar; 18(5):871-7. PubMed ID: 217427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stimulation of calcium uptake into aortic microsomes by cyclic AMP and cyclic AMP-dependent protein kinase.
    Fitzpatrick DF; Szentivanyi A
    Naunyn Schmiedebergs Arch Pharmacol; 1977 Jul; 298(3):255-7. PubMed ID: 197433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential centrifugation separates cardiac sarcolemmal and endosomal membranes from Langendorff-perfused rat hearts.
    Fuller W; Eaton P; Medina RA; Bell J; Shattock MJ
    Anal Biochem; 2001 Jun; 293(2):216-23. PubMed ID: 11399035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sarcolemmal (Ca2(+)+Mg2+)-ATPase of vascular smooth muscle and the effects of protein kinases thereupon.
    Imai S; Yoshida Y; Sun HT
    J Biochem; 1990 May; 107(5):755-61. PubMed ID: 2168873
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Histamine-induced calcium transients in vascular smooth muscle cells: effects of verapamil and diltiazem.
    Matsumoto T; Kanaide H; Nishimura J; Kuga T; Kobayashi S; Nakamura M
    Am J Physiol; 1989 Aug; 257(2 Pt 2):H563-70. PubMed ID: 2764137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition by cyclic GMP-dependent protein kinase of a histamine- and guanyl nucleotide-induced calcium permeability in pig aortic microsomes.
    Blayney LM; Gapper PW; Newby AC
    Biochem Soc Trans; 1990 Jun; 18(3):479-80. PubMed ID: 1695582
    [No Abstract]   [Full Text] [Related]  

  • 28. A Na+-Ca2+ exchange process in isolated sarcolemmal membranes of mesenteric arteries from WKY and SHR rats.
    Matlib MA; Schwartz A; Yamori Y
    Am J Physiol; 1985 Jul; 249(1 Pt 1):C166-72. PubMed ID: 2990226
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorylation of a 100 000 dalton component and its relationship to calcium transport in sarcoplasmic reticulum from rabbit skeletal muscle.
    Galani-Kranias E; Bick R; Schwartz A
    Biochim Biophys Acta; 1980 Apr; 628(4):438-50. PubMed ID: 6245711
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Mechanism of changes in the calcium permeability of the sarcolemma of vascular smooth muscle cells during hypoxia].
    Solov'ev AI; Stefanov AV
    Fiziol Zh SSSR Im I M Sechenova; 1985 Dec; 71(12):1560-7. PubMed ID: 4092776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorylation of endogenous and exogenous peptides by rat heart sarcolemma.
    Loten EG; Redshaw-Loten JC
    Biochim Biophys Acta; 1987 Mar; 927(3):324-33. PubMed ID: 3545302
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contribution of sarcolemmal sodium-calcium exchange and intracellular calcium release to force development in isolated canine ventricular muscle.
    Bouchard RA; Bose D
    J Gen Physiol; 1992 Jun; 99(6):931-60. PubMed ID: 1640221
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphorylation of multiple sites in a 15,000 dalton proteolipid from rat skeletal muscle sarcolemma, catalyzed by adenosine 3',5'-monophosphate-dependent and calcium/phospholipid-dependent protein kinases.
    Walaas SI; Horn RS; Albert KA; Adler A; Walaas O
    Biochim Biophys Acta; 1988 Jan; 968(1):127-37. PubMed ID: 3337842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Ca2+-calmodulin-dependent phosphorylation and passive transport of Ca2+ in the myocardial sarcolemma].
    Vorobets ZD; Kurskiĭ MD; Marchenko SN
    Biokhimiia; 1984 Aug; 49(8):1268-74. PubMed ID: 6149768
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effect of cardenolids and sodium ion gradient on ATP-dependent Ca2+ accumulation in cardiac sarcolemmal vesicles].
    Preobrazhenskiĭ AN; Kupriianov VV; Saks VA; Grosse R; Spitzer E
    Biokhimiia; 1982 Jan; 47(1):126-36. PubMed ID: 6279179
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of sarcolemma from calcium-tolerant canine cardiocytes.
    Weglicki WB; Kennett FF; Owens K; Spanier AM
    Basic Res Cardiol; 1985; 80 Suppl 2():41-4. PubMed ID: 2998331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An electrogenic Na+/Ca2+ antiporter in addition to the Ca2+ pump in cardiac sarcolemma.
    Lamers JM; Stinis JT
    Biochim Biophys Acta; 1981 Jan; 640(2):521-34. PubMed ID: 7213903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Kinetics of passive transport of Ca2+ in vesicular preparations of myocardial sarcolemma with inside-out oriented cytoplasm].
    Vorobets ZD; Kurskiĭ MD; Marchenko SN
    Biokhimiia; 1985 Jan; 50(1):25-31. PubMed ID: 2983783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Subfractionation of cardiac sarcolemma with wheat-germ agglutinin.
    Charuk JH; Howlett S; Michalak M
    Biochem J; 1989 Dec; 264(3):885-92. PubMed ID: 2559722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sodium-calcium exchange in sarcolemmal vesicles from tracheal smooth muscle.
    Slaughter RS; Welton AF; Morgan DW
    Biochim Biophys Acta; 1987 Nov; 904(1):92-104. PubMed ID: 2822116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.