BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 7216160)

  • 21. Influence of a 9-double bond on stereospecific microbial 4,5-reductions.
    Schubert K; Schumann G; Kaufmann G
    J Steroid Biochem; 1983 Jan; 18(1):75-80. PubMed ID: 6683343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The substrate binding cavity of particulate methane monooxygenase from Methylosinus trichosporium OB3b expresses high enantioselectivity for n-butane and n-pentane oxidation to 2-alcohol.
    Miyaji A; Miyoshi T; Motokura K; Baba T
    Biotechnol Lett; 2011 Nov; 33(11):2241-6. PubMed ID: 21744144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Benzylic alcohols as stereospecific substrates and inhibitors for aryl sulfotransferase.
    Rao SI; Duffel MW
    Chirality; 1991; 3(2):104-11. PubMed ID: 1863522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studies on the interactions of chiral secondary alcohols with rat hydroxysteroid sulfotransferase STa.
    Banoglu E; Duffel MW
    Drug Metab Dispos; 1997 Nov; 25(11):1304-10. PubMed ID: 9351908
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of zinc on the production of alcohol by Clostridium carboxidivorans P7 using model syngas.
    Li D; Meng C; Wu G; Xie B; Han Y; Guo Y; Song C; Gao Z; Huang Z
    J Ind Microbiol Biotechnol; 2018 Jan; 45(1):61-69. PubMed ID: 29204741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro esterification of fatty acids by various alcohols in rats and rabbits.
    Carlson GP
    Toxicol Lett; 1994 Jan; 70(1):57-61. PubMed ID: 8310457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Incubation at 25 °C prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7.
    Ramió-Pujol S; Ganigué R; Bañeras L; Colprim J
    Bioresour Technol; 2015 Sep; 192():296-303. PubMed ID: 26046429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol.
    Schoondermark-Stolk SA; Tabernero M; Chapman J; Ter Schure EG; Verrips CT; Verkleij AJ; Boonstra J
    FEMS Yeast Res; 2005 May; 5(8):757-66. PubMed ID: 15851104
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solid/gas biocatalysis: an appropriate tool to study the influence of organic components on kinetics of lipase-catalyzed alcoholysis.
    Létisse F; Lamare S; Legoy MD; Graber M
    Biochim Biophys Acta; 2003 Nov; 1652(1):27-34. PubMed ID: 14580994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Formation of so-called byproducts (propanols, butanols et al.) from ethanol by microorganisms].
    Stöhlmacher P
    Blutalkohol; 1996 May; 33(3):113-41. PubMed ID: 8737567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The elimination of ethyl, n-propyl, n-butyl and iso-amyl alcohols by the isolated perfused rat liver.
    Auty RM; Branch RA
    J Pharmacol Exp Ther; 1976 Jun; 197(3):669-74. PubMed ID: 932998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli.
    Chen X; Xu J; Yang L; Yuan Z; Xiao S; Zhang Y; Liang C; He M; Guo Y
    J Ind Microbiol Biotechnol; 2015 Nov; 42(11):1473-9. PubMed ID: 26350079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [On the specifity and stereospecificity of the conversion of different 2,3-unsaturated acids by Clostridium kluyveri (author's transl)].
    Hashimoto H; Günther H; Simon H
    Hoppe Seylers Z Physiol Chem; 1975 Aug; 356(8):1195-201. PubMed ID: 1176087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans.
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3361-70. PubMed ID: 26810079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of formate on the growth and productivity of Clostridium ljungdahlii PETC and Clostridium carboxidivorans P7 grown on syngas.
    Ramió-Pujol S; Ganigué R; Bañeras L; Colprim J
    Int Microbiol; 2014 Dec; 17(4):195-204. PubMed ID: 26421736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha.
    Lu J; Brigham CJ; Gai CS; Sinskey AJ
    Appl Microbiol Biotechnol; 2012 Oct; 96(1):283-97. PubMed ID: 22864971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved conversion efficiencies for n-fatty acid reduction to primary alcohols by the solventogenic acetogen "Clostridium ragsdalei".
    Isom CE; Nanny MA; Tanner RS
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):29-38. PubMed ID: 25410829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Permeability of human red cells to a homologous series of aliphatic alcohols. Limitations of the continuous flow-tube method.
    Brahm J
    J Gen Physiol; 1983 Feb; 81(2):283-304. PubMed ID: 6842175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures.
    Steinbusch KJ; Hamelers HV; Buisman CJ
    Water Res; 2008 Sep; 42(15):4059-66. PubMed ID: 18725163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats.
    Plapp BV; Leidal KG; Murch BP; Green DW
    Chem Biol Interact; 2015 Jun; 234():85-95. PubMed ID: 25641189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.