These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 7217000)

  • 1. Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii.
    Ben-Bassat A; Lamed R; Zeikus JG
    J Bacteriol; 1981 Apr; 146(1):192-9. PubMed ID: 7217000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii.
    Lamed R; Zeikus JG
    J Bacteriol; 1980 Nov; 144(2):569-78. PubMed ID: 7430065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum.
    Lovitt RW; Shen GJ; Zeikus JG
    J Bacteriol; 1988 Jun; 170(6):2809-15. PubMed ID: 3372483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose fermentation pathway of Thermoanaerobium brockii.
    Lamed R; Zeikus JG
    J Bacteriol; 1980 Mar; 141(3):1251-7. PubMed ID: 6767705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rumen
    Kaminsky RA; Reid PM; Altermann E; Kenters N; Kelly WJ; Noel SJ; Attwood GT; Janssen PH
    Appl Environ Microbiol; 2023 Oct; 89(10):e0063423. PubMed ID: 37800930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum.
    Weimer PJ; Zeikus JG
    Appl Environ Microbiol; 1977 Feb; 33(2):289-97. PubMed ID: 848953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of metabolism using stoichiometry in fermentative biohydrogen.
    Lee HS; Rittmann BE
    Biotechnol Bioeng; 2009 Feb; 102(3):749-58. PubMed ID: 18828179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium.
    Chen M; Wolin MJ
    Appl Environ Microbiol; 1977 Dec; 34(6):756-9. PubMed ID: 596874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of metabolic flux distribution in the thermophilic hydrogen producer Caloramator celer as affected by external pH and hydrogen partial pressure.
    Ciranna A; Pawar SS; Santala V; Karp M; van Niel EW
    Microb Cell Fact; 2014 Mar; 13(1):48. PubMed ID: 24678972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of substrate carbon on the metabolism of Clostridium thermohydrosulfuricum.
    Donaduzzi L; Germain P; Toukourou F; Myint S
    FEMS Microbiol Lett; 1989 Jan; 48(2):213-7. PubMed ID: 2721915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constancy of glucose and starch fermentations by two different human faecal microbial communities.
    Weaver GA; Krause JA; Miller TL; Wolin MJ
    Gut; 1989 Jan; 30(1):19-25. PubMed ID: 2920921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in product formation and bacterial community by dilution rate on carbohydrate fermentation by methanogenic microflora in continuous flow stirred tank reactor.
    Ueno Y; Haruta S; Ishii M; Igarashi Y
    Appl Microbiol Biotechnol; 2001 Oct; 57(1-2):65-73. PubMed ID: 11693936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbiology of methanogenesis in thermal, volcanic environments.
    Zeikus JG; Ben-Bassat A; Hegge PW
    J Bacteriol; 1980 Jul; 143(1):432-40. PubMed ID: 7400098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405.
    Islam R; Cicek N; Sparling R; Levin D
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):576-83. PubMed ID: 16685495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria.
    Carere CR; Rydzak T; Verbeke TJ; Cicek N; Levin DB; Sparling R
    BMC Microbiol; 2012 Dec; 12():295. PubMed ID: 23249097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping.
    Ezeji TC; Qureshi N; Blaschek HP
    Appl Microbiol Biotechnol; 2004 Feb; 63(6):653-8. PubMed ID: 12910325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of acetone-butanol-ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4.
    Thang VH; Kanda K; Kobayashi G
    Appl Biochem Biotechnol; 2010 May; 161(1-8):157-70. PubMed ID: 19771401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of S organism isolated from Methanobacillus omelianskii.
    Reddy CA; Bryant MP; Wolin MJ
    J Bacteriol; 1972 Feb; 109(2):539-45. PubMed ID: 5058442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High acetone-butanol-ethanol production in pH-stat co-feeding of acetate and glucose.
    Gao M; Tashiro Y; Wang Q; Sakai K; Sonomoto K
    J Biosci Bioeng; 2016 Aug; 122(2):176-82. PubMed ID: 26928043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.