These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 7217008)

  • 1. Metabolism of resorcinylic compounds by bacteria: new pathway for resorcinol catabolism in Azotobacter vinelandii.
    Groseclose EE; Ribbons DW
    J Bacteriol; 1981 May; 146(2):460-6. PubMed ID: 7217008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida.
    Chapman PJ; Ribbons DW
    J Bacteriol; 1976 Mar; 125(3):985-98. PubMed ID: 942589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of resorcinylic compounds by bacteria: orcinol pathway in Pseudomonas putida.
    Chapman PJ; Ribbons DW
    J Bacteriol; 1976 Mar; 125(3):975-84. PubMed ID: 1254564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the mechanism of the resorcinol ring formation catalyzed by ArsB, a type III polyketide synthase from Azotobacter vinelandii.
    Posehn SE; Kim SY; Wee AG; Suh DY
    Chembiochem; 2012 Oct; 13(15):2212-7. PubMed ID: 22961888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen inhibition in Azotobacter vinelandii pyruvate oxidation.
    DILWORTH MJ
    Biochim Biophys Acta; 1962 Jan; 56():127-38. PubMed ID: 13886430
    [No Abstract]   [Full Text] [Related]  

  • 6. [5-Alkyl(C19-C25) resorcinols as regulators of succinate and NAD-dependent substrate oxidation by mitochondria].
    Nenashev VA; Pridachina NN; Pronevich LA; Batrakov SG
    Biokhimiia; 1989 May; 54(5):784-7. PubMed ID: 2758080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of respiration and nitrogen fixation in different types of Azotobacter vinelandii.
    Haaker H; Veeger C
    Eur J Biochem; 1976 Apr; 63(2):499-507. PubMed ID: 4324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of some phenolic compounds by Azotobacter chroococcum and their effect on growth and nitrogenase activity.
    Abd-Alla MH
    Microbiologia; 1994 Sep; 10(3):273-8. PubMed ID: 7873103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The meta cleavage of catechol by Azotobacter species. 4-Oxalocrotonate pathway.
    Sala-Trepat JM; Evans WC
    Eur J Biochem; 1971 Jun; 20(3):400-13. PubMed ID: 4325686
    [No Abstract]   [Full Text] [Related]  

  • 10. Unique lipids in Azotobacter vinelandii cysts: synthesis, distribution, and fate during germination.
    Su CJ; Sadoff HL
    J Bacteriol; 1981 Jul; 147(1):91-6. PubMed ID: 7240100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of two oxidative reaction steps initiating anaerobic degradation of resorcinol (1,3-dihydroxybenzene) by the denitrifying bacterium Azoarcus anaerobius.
    Philipp B; Schink B
    J Bacteriol; 1998 Jul; 180(14):3644-9. PubMed ID: 9658009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic oxidation of tetramethyl-p-phenylenediamine and p-phenylenediamine by the electron transport particulate fraction of Azotobacter vinelandii.
    Jurtshuk P; Aston PR; Old L
    J Bacteriol; 1967 Mar; 93(3):1069-78. PubMed ID: 6025414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relation between anaerobic ATP synthesis from pyruvate and nitrogen fixation in Azotobacter vinelandii.
    Haaker H; Bresters TW; Veeger C
    FEBS Lett; 1972 Jun; 23(2):160-2. PubMed ID: 4343927
    [No Abstract]   [Full Text] [Related]  

  • 14. A strictly anaerobic nitrate-reducing bacterium growing with resorcinol and other aromatic compounds.
    Gorny N; Wahl G; Brune A; Schink B
    Arch Microbiol; 1992; 158(1):48-53. PubMed ID: 1444713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel route of tannic acid biotransformation and their effect on major biopolymer synthesis in Azotobacter sp. SSB81.
    Gauri SS; Mandal SM; Atta S; Dey S; Pati BR
    J Appl Microbiol; 2013 Jan; 114(1):84-95. PubMed ID: 23035941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physically associated enzymes produce and metabolize 2-hydroxy-2,4-dienoate, a chemically unstable intermediate formed in catechol metabolism via meta cleavage in Pseudomonas putida.
    Harayama S; Rekik M; Ngai KL; Ornston LN
    J Bacteriol; 1989 Nov; 171(11):6251-8. PubMed ID: 2681159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the Promiscuity of Phenol Hydroxylase from Pseudomonas stutzeri OX1 for the Biosynthesis of Phenolic Compounds.
    Wang J; Shen X; Wang J; Yang Y; Yuan Q; Yan Y
    ACS Synth Biol; 2018 May; 7(5):1238-1243. PubMed ID: 29659242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of resorcinylic compounds by bacteria. Purification and properties of acetylpyruvate hydrolase from Pseudomonas putida 01.
    Davey JF; Ribbons DW
    J Biol Chem; 1975 May; 250(10):3826-30. PubMed ID: 236305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific substrates for isolation and differentiation of Azotobacter vinelandii.
    Claus D; Hempel W
    Arch Mikrobiol; 1970; 73(1):90-6. PubMed ID: 4922852
    [No Abstract]   [Full Text] [Related]  

  • 20. Lipid metabolism during encystment of Azotobacter vinelandii.
    Reusch RN; Sadoff HL
    J Bacteriol; 1981 Feb; 145(2):889-95. PubMed ID: 7462162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.