These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 7217114)

  • 1. Propagation characteristics in distensible tubes containing a visco-elastic fluid.
    Kaimal MR
    J Biomech; 1981; 14(1):47-53. PubMed ID: 7217114
    [No Abstract]   [Full Text] [Related]  

  • 2. Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements.
    Alastruey J; Khir AW; Matthys KS; Segers P; Sherwin SJ; Verdonck PR; Parker KH; Peiró J
    J Biomech; 2011 Aug; 44(12):2250-8. PubMed ID: 21724188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional finite amplitude theory of arterial blood flow.
    Lou YS
    J Biomech; 1975 Jan; 8(1):57-63. PubMed ID: 1126974
    [No Abstract]   [Full Text] [Related]  

  • 4. A mathematical model of flow in a liquid-filled visco-elastic tube.
    Pontrelli G
    Med Biol Eng Comput; 2002 Sep; 40(5):550-6. PubMed ID: 12452416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wave propagation in a viscous fluid contained in an orthotropic elastic tube.
    Mirsky I
    Biophys J; 1967 Mar; 7(2):165-86. PubMed ID: 6048869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mathematical study of non-Newtonian blood flow through elastic arteries.
    Mazumdar J; Ang KC; Soh LL
    Australas Phys Eng Sci Med; 1991 Jun; 14(2):65-73. PubMed ID: 1747083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave propagation through a Newtonian fluid contained within a thick-walled, viscoelastic tube: the influence of wall compressibility.
    Cox RH
    J Biomech; 1970 May; 3(3):317-35. PubMed ID: 5521549
    [No Abstract]   [Full Text] [Related]  

  • 8. [Sexual differences with age in the dynamics of several indices of the visco-elastic state of the arteries].
    Nikolaev EI
    Probl Endokrinol (Mosk); 1970; 16(6):45-8. PubMed ID: 5521089
    [No Abstract]   [Full Text] [Related]  

  • 9. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.
    Ikenaga Y; Nishi S; Komagata Y; Saito M; Lagrée PY; Asada T; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2381-8. PubMed ID: 24158293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical analysis of pressure pulse propagation in arterial vessels.
    Belardinelli E; Cavalcanti S
    J Biomech; 1992 Nov; 25(11):1337-49. PubMed ID: 1400535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of pulse propagation in viscoelastic arteries with distributed flow leakage.
    Hoff CJ; Yang WJ
    Biomed Mater Eng; 1994; 4(6):419-37. PubMed ID: 7833786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure-radius relationships for elastic tubes and their application to arteries: Part 1--Theoretical relationships.
    Taylor LA; Gerrard JH
    Med Biol Eng Comput; 1977 Jan; 15(1):11-7. PubMed ID: 194117
    [No Abstract]   [Full Text] [Related]  

  • 13. Pressure-radius relationships for elastic tubes and their applications to arteries: Part 2--A comparison of theory and experiment for a rubber tube.
    Taylor LA; Gerrard JH
    Med Biol Eng Comput; 1977 Jan; 15(1):18-21. PubMed ID: 194118
    [No Abstract]   [Full Text] [Related]  

  • 14. Correlation between the characteristics of acceleration and visco elasticity of artery wall under pulsatile flow conditions (physical meaning of I* as a parameter of progressive behaviors of atherosclerosis and arteriosclerosis).
    Yokobori AT; Ohmi T; Monma R; Tomono Y; Inoue K; Owa M; Ichiki M; Mochizuki N; Yamashita H
    Biomed Mater Eng; 2013; 23(1-2):75-91. PubMed ID: 23442239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical evaluation of blood viscosity affecting pulse wave propagation in a fluid-structure interaction model.
    He F; Hua L; Gao LJ
    Biomed Tech (Berl); 2015 Feb; 60(1):11-5. PubMed ID: 25720033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wave propagation through a newtonian fluid contained within a thick-walled, viscoelastic tube.
    Ox RH
    Biophys J; 1968 Jun; 8(6):691-709. PubMed ID: 5699803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear separation of forward and backward running waves in elastic conduits.
    Stergiopulos N; Tardy Y; Meister JJ
    J Biomech; 1993 Feb; 26(2):201-9. PubMed ID: 8429061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wave transmission through an assembly of randomly branching elastic tubes.
    Taylor MG
    Biophys J; 1966 Nov; 6(6):697-716. PubMed ID: 5972372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels.
    Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN
    J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical vulnerability of lower second premolar utilising visco-elastic dynamic stress analysis.
    Khani MM; Tafazzoli-Shadpour M; Aghajani F; Naderi P
    Comput Methods Biomech Biomed Engin; 2009 Oct; 12(5):553-61. PubMed ID: 19266350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.