These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 7217148)
1. The mechanical properties of bone in osteoporosis. Dickenson RP; Hutton WC; Stott JR J Bone Joint Surg Br; 1981 Aug; 63-B(2):233-8. PubMed ID: 7217148 [TBL] [Abstract][Full Text] [Related]
2. Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions. Zimmermann EA; Schaible E; Gludovatz B; Schmidt FN; Riedel C; Krause M; Vettorazzi E; Acevedo C; Hahn M; Püschel K; Tang S; Amling M; Ritchie RO; Busse B Sci Rep; 2016 Feb; 6():21072. PubMed ID: 26879146 [TBL] [Abstract][Full Text] [Related]
3. Trabecular bone tissue strains in the healthy and osteoporotic human femur. Van Rietbergen B; Huiskes R; Eckstein F; Rüegsegger P J Bone Miner Res; 2003 Oct; 18(10):1781-8. PubMed ID: 14584888 [TBL] [Abstract][Full Text] [Related]
4. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Lotz JC; Cheal EJ; Hayes WC Osteoporos Int; 1995; 5(4):252-61. PubMed ID: 7492864 [TBL] [Abstract][Full Text] [Related]
5. Femoral metaphysis bending test of rat: introduction and validation of a novel biomechanical testing protocol for osteoporosis. Chen B; Li Y; Yang X; Xie D J Orthop Sci; 2012 Jan; 17(1):70-6. PubMed ID: 22045451 [TBL] [Abstract][Full Text] [Related]
6. An absence of structural changes in the proximal femur with osteoporosis. Saitoh S; Nakatsuchi Y; Latta L; Milne E Skeletal Radiol; 1993 Aug; 22(6):425-31. PubMed ID: 8248816 [TBL] [Abstract][Full Text] [Related]
7. Strain energy in the femoral neck during exercise. Martelli S; Kersh ME; Schache AG; Pandy MG J Biomech; 2014 Jun; 47(8):1784-91. PubMed ID: 24746018 [TBL] [Abstract][Full Text] [Related]
8. Aging of bone tissue: mechanical properties. Burstein AH; Reilly DT; Martens M J Bone Joint Surg Am; 1976 Jan; 58(1):82-6. PubMed ID: 1249116 [TBL] [Abstract][Full Text] [Related]
9. Effect of bone size, not density, on the stiffness of the proximal part of normal and osteoporotic human femora. Cordey J; Schneider M; Belendez C; Ziegler WJ; Rahn BA; Perren SM J Bone Miner Res; 1992 Dec; 7 Suppl 2():S437-44. PubMed ID: 1485554 [TBL] [Abstract][Full Text] [Related]
10. New QCT analysis approach shows the importance of fall orientation on femoral neck strength. Carpenter RD; Beaupré GS; Lang TF; Orwoll ES; Carter DR; J Bone Miner Res; 2005 Sep; 20(9):1533-42. PubMed ID: 16059625 [TBL] [Abstract][Full Text] [Related]
11. Exercise capacity independently predicts bone mineral density and proximal femoral geometry in patients with acute decompensated heart failure. Youn JC; Lee SJ; Lee HS; Oh J; Hong N; Park S; Lee SH; Choi D; Rhee Y; Kang SM Osteoporos Int; 2015 Aug; 26(8):2121-9. PubMed ID: 25963233 [TBL] [Abstract][Full Text] [Related]
12. Correlations between structural and mechanical properties of human trabecular femur bone. Nikodem A Acta Bioeng Biomech; 2012; 14(2):37-46. PubMed ID: 22793376 [TBL] [Abstract][Full Text] [Related]
13. Trabecular bone contributes to strength of the proximal femur under mediolateral impact in the avian. Passi N; Gefen A J Biomech Eng; 2005 Feb; 127(1):198-203. PubMed ID: 15868803 [TBL] [Abstract][Full Text] [Related]
14. Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Homminga J; McCreadie BR; Ciarelli TE; Weinans H; Goldstein SA; Huiskes R Bone; 2002 May; 30(5):759-64. PubMed ID: 11996916 [TBL] [Abstract][Full Text] [Related]
15. Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis. Nazarian A; von Stechow D; Zurakowski D; Müller R; Snyder BD Calcif Tissue Int; 2008 Dec; 83(6):368-79. PubMed ID: 18946628 [TBL] [Abstract][Full Text] [Related]
16. The use of estrogen, DHEA, and diosgenin in a sustained delivery setting as a novel treatment approach for osteoporosis in the ovariectomized adult rat model. Higdon K; Scott A; Tucci M; Benghuzzi H; Tsao A; Puckett A; Cason Z; Hughes J Biomed Sci Instrum; 2001; 37():281-6. PubMed ID: 11347403 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical evaluation in osteoporosis: ovariectomized rat model. Comelekoglu U; Bagis S; Yalin S; Ogenler O; Yildiz A; Sahin NO; Oguz I; Hatungil R Clin Rheumatol; 2007 Mar; 26(3):380-4. PubMed ID: 16944072 [TBL] [Abstract][Full Text] [Related]
18. Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Namkung-Matthai H; Appleyard R; Jansen J; Hao Lin J; Maastricht S; Swain M; Mason RS; Murrell GA; Diwan AD; Diamond T Bone; 2001 Jan; 28(1):80-6. PubMed ID: 11165946 [TBL] [Abstract][Full Text] [Related]
19. Dynamic short crack growth in cortical bone. Hazenberg JG; Taylor D; Lee TC Technol Health Care; 2006; 14(4-5):393-402. PubMed ID: 17065760 [TBL] [Abstract][Full Text] [Related]
20. Effect of osteoporosis on bone mineral density and fracture repair in a rat femoral fracture model. McCann RM; Colleary G; Geddis C; Clarke SA; Jordan GR; Dickson GR; Marsh D J Orthop Res; 2008 Mar; 26(3):384-93. PubMed ID: 17960650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]