BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 721812)

  • 21. Calmodulin-mediated regulation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity in isolated cardiac sarcoplasmic reticulum.
    Kirchberger MA; Antonetz T
    J Biol Chem; 1982 May; 257(10):5685-91. PubMed ID: 6121798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of quinidine on calcium accumulation by isolated sarcoplasmic reticulum of skeletal and cardiac muscle.
    Fuchs F; Gertz EW; Briggs FN
    J Gen Physiol; 1968 Dec; 52(6):955-68. PubMed ID: 4235401
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of calcium transport in cardiac sarcoplasmic reticulum by cyclic AMP-dependent protein kinase.
    Tada M; Kirchberger MA; Katz AM
    Recent Adv Stud Cardiac Struct Metab; 1976; 9():225-39. PubMed ID: 176697
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional characterization of junctional terminal cisternae from mammalian fast skeletal muscle sarcoplasmic reticulum.
    Chu A; Volpe P; Costello B; Fleischer S
    Biochemistry; 1986 Dec; 25(25):8315-24. PubMed ID: 2434126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ATPase activities, Ca2+ transport and phosphoprotein formation in sarcoplasmic reticulum subfractions of fast and slow rabbit muscles.
    Heilmann C; Brdiczka D; Nickel E; Pette D
    Eur J Biochem; 1977 Dec; 81(2):211-22. PubMed ID: 145941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Cause of increase in the efficiency of Ca2+ transport by fragments of sarcoplasmic reticulum from fast skeletal muscles induced by protein kinase].
    Avakian EA; Ritov VB; Kozlov IuP
    Biokhimiia; 1980 Apr; 45(4):601-8. PubMed ID: 6246973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of calcium load on the calcium permeability of sarcoplasmic reticulum.
    Feher JJ; Briggs FN
    J Biol Chem; 1982 Sep; 257(17):10191-9. PubMed ID: 6809746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane asymmetry in isolated canine cardiac sarcoplasmic reticulum: comparison with skeletal muscle sarcoplasmic reticulum.
    Bick RJ; Buja LM; Van Winkle WB; Taffet GE
    J Membr Biol; 1998 Jul; 164(2):169-75. PubMed ID: 9662560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Ca2+ uptake and ATPase activity of sarcoplasmic reticulum in the presence of diethyl ether.
    Salama G; Scarpa A
    J Biol Chem; 1980 Jul; 255(14):6525-8. PubMed ID: 6446558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Mg2+ concentration on Ca2+ uptake kinetics and structure of the sarcoplasmic reticulum membrane.
    Asturias FJ; Blasie JK
    Biophys J; 1989 Apr; 55(4):739-53. PubMed ID: 2524225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calcium transport by sarcoplasmic reticulum of skeletal muscle is inhibited by antibodies against the 53-kilodalton glycoprotein of the sarcoplasmic reticulum membrane.
    Kutchai H; Campbell KP
    Biochemistry; 1989 May; 28(11):4830-9. PubMed ID: 2527558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The regulation of Ca2+ transport by fast skeletal muscle sarcoplasmic reticulum. Role of calmodulin and of the 53,000-dalton glycoprotein.
    Chiesi M; Carafoli E
    J Biol Chem; 1982 Jan; 257(2):984-91. PubMed ID: 6459325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [ATPase activity and processes of calcium transport in membranes of sarcoplasmic reticulum of skeletal muscles with E-avitaminotic dystrophy].
    Kurskiĭ MD; Grigor'eva VA; Medovar EN; Meshkova LI
    Ukr Biokhim Zh (1978); 1978; 50(1):85-90. PubMed ID: 146930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid kinetics of calcium ion transport and ATPase activity in the sarcoplasmic reticulum of dystrophic muscle.
    Verjovski-Almeida S; Inesi G
    Biochim Biophys Acta; 1979 Nov; 558(1):119-25. PubMed ID: 159072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preliminary observations of pre-steady-state kinetics of phosphorylation and dephosphorylation of sarcoplasmic reticulum (SR) membranes from heart and skeletal muscle.
    Sumida M; Schwartz A; Froehlich JP
    Ann N Y Acad Sci; 1978 Apr; 307():228. PubMed ID: 280265
    [No Abstract]   [Full Text] [Related]  

  • 36. Significance of the membrane protein phospholamban in cyclic AMP-mediated regulation of calcium transport by sarcoplasmic reticulum.
    Tada M; Kirchberger MA
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():265-72. PubMed ID: 201984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase.
    Suko J; Hasselbach W
    Eur J Biochem; 1976 Apr; 64(1):123-30. PubMed ID: 6267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorylation of a 100 000 dalton component and its relationship to calcium transport in sarcoplasmic reticulum from rabbit skeletal muscle.
    Galani-Kranias E; Bick R; Schwartz A
    Biochim Biophys Acta; 1980 Apr; 628(4):438-50. PubMed ID: 6245711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ca2+/calmodulin-dependent phosphorylation of the Ca2+-ATPase, uncoupled from phospholamban, stimulates Ca2+-pumping in native cardiac sarcoplasmic reticulum.
    Xu A; Narayanan N
    Biochem Biophys Res Commun; 1999 Apr; 258(1):66-72. PubMed ID: 10222236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation and characterization of longitudinal tubules of sarcoplasmic reticulum from fast skeletal muscle.
    Chu A; Saito A; Fleischer S
    Arch Biochem Biophys; 1987 Oct; 258(1):13-23. PubMed ID: 2444161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.