These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 7219080)

  • 1. The prevention of alcoholic fatty liver using dietary supplements: dihydroxyacetone, pyruvate and riboflavin compared to arachidonic acid in pair-fed rats.
    Goheen SC; Pearson EE; Larkin EC; Rao GA
    Lipids; 1981 Jan; 16(1):43-51. PubMed ID: 7219080
    [No Abstract]   [Full Text] [Related]  

  • 2. Prevention of effects of ethanol on amino acid concentrations in plasma and tissues by hepatic lipotropic factors in rats.
    Stanko RT; Morse EL; Adibi SA
    Gastroenterology; 1979 Jan; 76(1):132-8. PubMed ID: 758134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prevention of alcohol-induced fatty liver by natural metabolites and riboflavin.
    Stanko RT; Mendelow H; Shinozuka H; Adibi SA
    J Lab Clin Med; 1978 Feb; 91(2):228-35. PubMed ID: 621425
    [No Abstract]   [Full Text] [Related]  

  • 4. Fatty liver caused by chronic alcohol ingestion is prevented by dietary supplementation with pyruvate or glycerol.
    Rao GA; Riley DE; Larkin EC
    Lipids; 1984 Aug; 19(8):583-8. PubMed ID: 6482682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatic triacylglycerol accumulation induced by ethanol and carbon tetrachloride: interactions with essential fatty acids and prostaglandins.
    Cunnane SC
    Alcohol Clin Exp Res; 1987 Feb; 11(1):25-31. PubMed ID: 3032013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Severe fatty liver in rats fed a fat-free ethanol diet, and its prevention by small amounts of dietary arachidonate.
    Goheen SC; Larkin EC; Rao GA
    Lipids; 1983 Apr; 18(4):285-90. PubMed ID: 6408332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary arachidonic acid reduces fatty liver, increases diet consumption and weight gain in ethanol-fed rats.
    Goheen SC; Larkin EC; Manix M; Rao GA
    Lipids; 1980 May; 15(5):328-36. PubMed ID: 7392827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant mechanism of hepatoprotection by ursodeoxycholic acid in experimental alcoholic steatohepatitis.
    Lukivskaya O; Zavodnik L; Knas M; Buko V
    Adv Med Sci; 2006; 51():54-9. PubMed ID: 17357278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of lipid accumulation and enhancement of energy expenditure by the addition of pyruvate and dihydroxyacetone to a rat diet.
    Stanko RT; Adibi SA
    Metabolism; 1986 Feb; 35(2):182-6. PubMed ID: 3945187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary α-linolenic acid-rich flaxseed oil prevents against alcoholic hepatic steatosis via ameliorating lipid homeostasis at adipose tissue-liver axis in mice.
    Wang M; Zhang XJ; Feng K; He C; Li P; Hu YJ; Su H; Wan JB
    Sci Rep; 2016 May; 6():26826. PubMed ID: 27220557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liver fat and plasma ethanol are sharply lower in rats fed ethanol in conjunction with high carbohydrate compared with high fat diets.
    Fisher H; Halladay A; Ramasubramaniam N; Petrucci JC; Dagounis D; Sekowski A; Martin JV; Wagner GC
    J Nutr; 2002 Sep; 132(9):2732-6. PubMed ID: 12221237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of glycerol and dihydroxyacetone on hepatic lipogenesis.
    Carmona A; Freedland RA
    Arch Biochem Biophys; 1989 May; 271(1):130-8. PubMed ID: 2712570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of lipid metabolism in the pathogenesis of alcoholic and nonalcoholic hepatic steatosis.
    Sozio MS; Liangpunsakul S; Crabb D
    Semin Liver Dis; 2010 Nov; 30(4):378-90. PubMed ID: 20960377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of adiponectin in the protective action of dietary saturated fat against alcoholic fatty liver in mice.
    You M; Considine RV; Leone TC; Kelly DP; Crabb DW
    Hepatology; 2005 Sep; 42(3):568-77. PubMed ID: 16108051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Susceptibility of Different Mouse Wild Type Strains to Develop Diet-Induced NAFLD/AFLD-Associated Liver Disease.
    Fengler VH; Macheiner T; Kessler SM; Czepukojc B; Gemperlein K; Müller R; Kiemer AK; Magnes C; Haybaeck J; Lackner C; Sargsyan K
    PLoS One; 2016; 11(5):e0155163. PubMed ID: 27167736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fish oil reduces cholesterol and arachidonic acid content more efficiently in rats fed diets containing low linoleic acid to saturated fatty acid ratios.
    Garg ML; Wierzbicki AA; Thomson AB; Clandinin MT
    Biochim Biophys Acta; 1988 Oct; 962(3):337-44. PubMed ID: 2844278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic repercussion of coenzyme-A (CoA) in experimental ethanol hepatopathy.
    Santos-Ruiz A; Cascales C; Martín-Sanz P; Cascales M
    Acta Vitaminol Enzymol; 1982; 4(1-2):69-80. PubMed ID: 7124569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dihydroxyacetone naphthoquinone protection against photosensitivity.
    Rice EG
    Dermatologica; 1976; 153(1):38-43. PubMed ID: 791716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of gluconeogenesis from dihydroxyacetone in rat hepatocytes during a feeding cycle and starvation.
    Azzout B; Peret J
    Biochem J; 1984 Mar; 218(3):975-81. PubMed ID: 6721842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible role of pyruvate kinase in the hormonal control of dihydroxyacetone gluconeogenesis in isolated heptatocytes.
    Pilkis SJ; Claus TH; Riou JP; Park CR
    Metabolism; 1976 Nov; 25(11 Suppl 1):1355-60. PubMed ID: 979635
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.