These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 7219219)

  • 1. [Arsenic oxidation by the heterotrophic bacteria Pseudomonas putida and Alcaligenes eutrophus].
    Abdrashitova SA; Mynbaeva BN; Ilialetdinov AN
    Mikrobiologiia; 1981; 50(1):41-5. PubMed ID: 7219219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Catalase activity of a Pseudomonas putida strain oxidizing arsenic].
    Abdrashitova SA; Ilialetdinov AN; Mynbaeva BN; Abdullina GG
    Mikrobiologiia; 1982; 51(1):34-7. PubMed ID: 7070307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Toxicity of compounds formed after arsenic oxidation by microorganisms].
    Abdrashitova SA; Abdullina GG
    Gig Sanit; 1984 Oct; (10):86-8. PubMed ID: 6519479
    [No Abstract]   [Full Text] [Related]  

  • 4. Removal of arsenic from groundwater by arsenite-oxidizing bacteria.
    Ike M; Miyazaki T; Yamamoto N; Sei K; Soda S
    Water Sci Technol; 2008; 58(5):1095-100. PubMed ID: 18824809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold-silver mines in the Republic of Korea.
    Chang JS; Kim YH; Kim KW
    Appl Microbiol Biotechnol; 2008 Aug; 80(1):155-65. PubMed ID: 18560832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Autotrophic arsenic oxidation by a Pseudomonas arsenitoxidans culture].
    Ilialetdinov AN; Abdrashitova SA
    Mikrobiologiia; 1981; 50(2):197-204. PubMed ID: 7242389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand.
    Anderson CR; Cook GM
    Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecophysiology and geochemistry of microbial arsenic oxidation within a high arsenic, circumneutral hot spring system of the Alvord Desert.
    Connon SA; Koski AK; Neal AL; Wood SA; Magnuson TS
    FEMS Microbiol Ecol; 2008 Apr; 64(1):117-28. PubMed ID: 18318711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and abiotic oxidation of arsenic by aged biofilter media: equilibrium and kinetics.
    Sahabi DM; Takeda M; Suzuki I; Koizumi J
    J Hazard Mater; 2009 Sep; 168(2-3):1310-8. PubMed ID: 19346074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of three bacteria in arsenic solution and their application for arsenic removal from wastewater.
    Mondal P; Majumder CB; Mohanty B
    J Basic Microbiol; 2008 Dec; 48(6):521-5. PubMed ID: 18792057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Action of polycarbon compounds on the oxidation of methanol and other Cl compounds by methylotrophic bacteria].
    Zakharova EV
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1983; (6):83-7. PubMed ID: 6411135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Aniline oxidation by microorganisms in chemostat cultivation].
    Orshanskaia FB; Zelenskaia TA; Arkad'eva ZA
    Mikrobiologiia; 1986; 55(2):337-8. PubMed ID: 3724566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Glucose consumption and dehydrogenase activity of the cells of the arsenite-oxidizing bacterium Pseudomonas putida].
    Abdrashitova SA; Abdullina GG; Ilialetdinov AN
    Mikrobiologiia; 1985; 54(4):679-81. PubMed ID: 4058329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenite oxidation by Alcaligenes sp. strain RS-19 isolated from arsenic-contaminated mines in the Republic of Korea.
    Yoon IH; Chang JS; Lee JH; Kim KW
    Environ Geochem Health; 2009 Feb; 31(1):109-17. PubMed ID: 18642094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France).
    Casiot C; Morin G; Juillot F; Bruneel O; Personné JC; Leblanc M; Duquesne K; Bonnefoy V; Elbaz-Poulichet F
    Water Res; 2003 Jul; 37(12):2929-36. PubMed ID: 12767295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An rpoN-like gene of Alcaligenes eutrophus and Pseudomonas facilis controls expression of diverse metabolic pathways, including hydrogen oxidation.
    Römermann D; Warrelmann J; Bender RA; Friedrich B
    J Bacteriol; 1989 Feb; 171(2):1093-9. PubMed ID: 2536672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Inhibition of the autotrophic growth of hydrogen bacteria by the autoregulation factor].
    Savel'eva ND; El'-Registman GI; Zavarzin GA
    Mikrobiologiia; 1980; 49(3):373-6. PubMed ID: 7402116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of arsenite-oxidizing bacteria from arsenic-enriched sediments from Camarones river, Northern Chile.
    Valenzuela C; Campos VL; Yañez J; Zaror CA; Mondaca MA
    Bull Environ Contam Toxicol; 2009 May; 82(5):593-6. PubMed ID: 19190837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Reversible oxidation-reduction of NAD by hydrogen, catalyzed by soluble hydrogenase from Alcaligenes eutrophus Z-1].
    Pinchukova EE; Varfolomeev SD
    Biokhimiia; 1980 Aug; 45(8):1405-11. PubMed ID: 7236793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of arsenite to arsenate by Alcaligenes faecalis.
    Philips SE; Taylor ML
    Appl Environ Microbiol; 1976 Sep; 32(3):392-9. PubMed ID: 10837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.