These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 7219717)

  • 1. The nature of the membrane potential of glial cells associated with the medial giant axon of the crayfish.
    Lieberman EM; Villegas J; Villegas GM
    Neuroscience; 1981; 6(2):261-71. PubMed ID: 7219717
    [No Abstract]   [Full Text] [Related]  

  • 2. Activity-dependent change in morphology of the glial tubular lattice of the crayfish medial giant nerve fiber.
    Beshay JE; Hahn P; Beshay VE; Hargittai PT; Lieberman EM
    Glia; 2005 Aug; 51(2):121-31. PubMed ID: 15789432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological and pharmacological properties of glial cells associated with the medial giant axon of the crayfish with implications four neuron-glial cell interactions.
    Smiley KA; Lieberman EM
    Ups J Med Sci; 1980; 85(3):331-42. PubMed ID: 6262986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of axon-glial cell interactions and periaxonal K+ homeostasis--II. The effect of axonal stimulation, cholinergic agents and transport inhibitors on the resistance in series with the axon membrane.
    Hassan S; Lieberman EM
    Neuroscience; 1988 Jun; 25(3):961-9. PubMed ID: 3405437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct communication between axons and sheath glial cells in crayfish.
    Peracchia C
    Nature; 1981 Apr; 290(5807):597-8. PubMed ID: 7219545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of axon-glial cell interactions and periaxonal K+ homeostasis--III. The effect of anisosmotic media and potassium on the relationship between the resistance in series with the axon membrane and glial cell volume.
    Lieberman EM; Hassan S
    Neuroscience; 1988 Jun; 25(3):971-81. PubMed ID: 3405438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of axon-glial cell interactions and periaxonal K- homeostasis--I. The influence of Na+, K+, Cl- and cholinergic agents on the membrane potential of the adaxonal glia of the crayfish medial giant axon.
    Brunder DG; Lieberman EM
    Neuroscience; 1988 Jun; 25(3):951-9. PubMed ID: 3405436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term survival of severed crayfish giant axons is not associated with an incorporation of glial nuclei into axoplasm.
    Sheller RA; Ballinger ML; Bittner GD
    Neurosci Lett; 1991 Nov; 133(1):113-6. PubMed ID: 1724309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axon-glia interactions in the crayfish: glial cell oxygen consumption is tightly coupled to axon metabolism.
    Hargittai PT; Lieberman EM
    Glia; 1991; 4(4):417-23. PubMed ID: 1834562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic vesicles: selective depletion in crayfish excitatory and inhibitory axons.
    Atwood HL; Lang F; Morin WA
    Science; 1972 Jun; 176(4041):1353-5. PubMed ID: 5034553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The periaxonal space of crayfish giant axons.
    Shrager P; Starkus JC; Lo MV; Peracchia C
    J Gen Physiol; 1983 Aug; 82(2):221-44. PubMed ID: 6311939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural studies of severed medial giant and other CNS axons in crayfish.
    Ballinger ML; Bittner GD
    Cell Tissue Res; 1980; 208(1):123-33. PubMed ID: 7388925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axon-glia transfer of a protein and a carbohydrate.
    Grossfeld RM; Klinge MA; Lieberman EM; Stewart LC
    Glia; 1988; 1(4):292-300. PubMed ID: 2467884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regenerating crayfish motor axons assimilate glial cells and sprout in cultured explants.
    Pearce J; Lnenicka GA; Govind CK
    J Comp Neurol; 2003 Sep; 464(4):449-62. PubMed ID: 12900916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamine cycle enzymes in the crayfish giant nerve fiber: implications for axon-to-glia signaling.
    McKinnon E; Hargittai PT; Grossfeld RM; Lieberman EM
    Glia; 1995 Jul; 14(3):198-208. PubMed ID: 7591031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glia-to-axon communication: enrichment of glial proteins transferred to the squid giant axon.
    Sheller RA; Tytell M; Smyers M; Bittner GD
    J Neurosci Res; 1995 Jun; 41(3):324-34. PubMed ID: 7563225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The optic nerve: a model for axon-glial interactions.
    Bolton S; Butt AM
    J Pharmacol Toxicol Methods; 2005; 51(3):221-33. PubMed ID: 15862467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organelle flux in intact and transected crayfish giant axons.
    Viancour TA
    Brain Res; 1990 Dec; 535(2):245-54. PubMed ID: 1705857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical studies of trophic dependences in crayfish giant axons.
    Meyer MR; Bittner GD
    Brain Res; 1978 Mar; 143(2):213-32. PubMed ID: 75753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential survival of isolated portions of crayfish axons.
    Bittner GD; Mann DW
    Cell Tissue Res; 1976 Jun; 169(3):301-11. PubMed ID: 949727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.