These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7219721)

  • 1. Biochemical evidence for overlapping neocortical and allocortical glutamate projections to the nucleus accumbens and rostral caudatoputamen in the rat brain.
    Walaas I
    Neuroscience; 1981; 6(3):399-405. PubMed ID: 7219721
    [No Abstract]   [Full Text] [Related]  

  • 2. Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain.
    McDonald AJ
    Neuroscience; 1991; 44(1):15-33. PubMed ID: 1722890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. D-2 receptor stimulation inhibits cyclic AMP formation brought about by D-1 receptor stimulation in rat neostriatum but not nucleus accumbens.
    Stoof JC; Verheijden PF
    Eur J Pharmacol; 1986 Sep; 129(1-2):205-6. PubMed ID: 3021477
    [No Abstract]   [Full Text] [Related]  

  • 4. Methylmercury-induced movement and postural disorders in developing rat: high-affinity uptake of choline, glutamate, and gamma-aminobutyric acid in the cerebral cortex and caudate-putamen.
    O'Kusky JR; McGeer EG
    J Neurochem; 1989 Oct; 53(4):999-1006. PubMed ID: 2570131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amphetamine facilitates the in vivo release of neurokinin A in the nucleus accumbens of the rat.
    Lindefors N; Brodin E; Ungerstedt U
    Eur J Pharmacol; 1989 Feb; 160(3):417-20. PubMed ID: 2540996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mosaic distribution of phosphate-activated glutaminase-like immunoreactivity in the rat striatum.
    Kaneko T; Mizuno N
    Neuroscience; 1992 Jul; 49(2):329-45. PubMed ID: 1436471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain.
    Fonnum F; Storm-Mathisen J; Divac I
    Neuroscience; 1981; 6(5):863-73. PubMed ID: 6113562
    [No Abstract]   [Full Text] [Related]  

  • 8. The effects of surgical and chemical lesions on neurotransmitter candidates in the nucleus accumbens of the rat.
    Walaas I; Fonnum F
    Neuroscience; 1979; 4(2):209-16. PubMed ID: 34123
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of D-2 antagonists on frequency-dependent stimulated dopamine overflow in nucleus accumbens and caudate-putamen.
    May LJ; Wightman RM
    J Neurochem; 1989 Sep; 53(3):898-906. PubMed ID: 2527290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional and cellular distribution of serotonin 5-hydroxytryptamine2a receptor mRNA in the nucleus accumbens, olfactory tubercle, and caudate putamen of the rat.
    Mijnster MJ; Raimundo AG; Koskuba K; Klop H; Docter GJ; Groenewegen HJ; Voorn P
    J Comp Neurol; 1997 Dec; 389(1):1-11. PubMed ID: 9390756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic lesion of corticostriatal fibers reduces GABAB but not GABAA binding in rat caudate putamen: an autoradiographic study.
    Moratalla R; Bowery NG
    Neurochem Res; 1991 Mar; 16(3):309-15. PubMed ID: 1664057
    [No Abstract]   [Full Text] [Related]  

  • 12. The effects of kainic acid injections on guanylate cyclase activity in the rat caudatoputamen, nucleus accumbens and septum.
    Walaas I
    J Neurochem; 1981 Jan; 36(1):233-41. PubMed ID: 6109755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion and uptake of dopamine in rat caudate and nucleus accumbens compared using fast cyclic voltammetry.
    Stamford JA; Kruk ZL; Palij P; Millar J
    Brain Res; 1988 May; 448(2):381-5. PubMed ID: 3378163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that thalamic efferent neurones are non-cholinergic: a study in the rat with special reference to the thalamostriatal pathway.
    Barrington-Ward SJ; Kilpatrick IC; Phillipson OT; Pycock CJ
    Brain Res; 1984 May; 299(1):146-51. PubMed ID: 6722563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeated administration of high doses of amphetamine increases release of ascorbic acid in caudate but not nucleus accumbens.
    Mueller K
    Brain Res; 1989 Aug; 494(1):30-5. PubMed ID: 2765922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations in L-glutamate binding in Alzheimer's and Huntington's diseases.
    Greenamyre JT; Penney JB; Young AB; D'Amato CJ; Hicks SP; Shoulson I
    Science; 1985 Mar; 227(4693):1496-9. PubMed ID: 2858129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of L-dopa decarboxylating neurons specific to human striatum.
    Ikemoto K; Kitahama K; Jouvet A; Arai R; Nishimura A; Nishi K; Nagatsu I
    Neurosci Lett; 1997 Aug; 232(2):111-4. PubMed ID: 9302099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of CXCR4 in the forebrain of the adult rat.
    Trecki J; Brailoiu GC; Unterwald EM
    Brain Res; 2010 Feb; 1315():53-62. PubMed ID: 20026091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strychnine-sensitive glycine receptors in rat caudatoputamen are expressed by cholinergic interneurons.
    Darstein M; Landwehrmeyer GB; Kling C; Becker CM; Feuerstein TJ
    Neuroscience; 2000; 96(1):33-9. PubMed ID: 10683407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitatory amino acid projections to the nucleus accumbens septi in the rat: a retrograde transport study utilizing D[3H]aspartate and [3H]GABA.
    Christie MJ; Summers RJ; Stephenson JA; Cook CJ; Beart PM
    Neuroscience; 1987 Aug; 22(2):425-39. PubMed ID: 2823173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.