These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 7220981)

  • 1. Cortical and subcortical potentials during goal-directed and serial goal-directed movements in humans.
    Knapp E; Schmid H; Ganglberger JA; Haider M
    Prog Brain Res; 1980; 54():66-9. PubMed ID: 7220981
    [No Abstract]   [Full Text] [Related]  

  • 2. Two components of slow negative potential shifts during smooth goal-directed hand movements.
    Grünewald-Zuberbier E; Grünewald G; Hömberg V; Schuhmacher H
    Prog Brain Res; 1980; 54():755-60. PubMed ID: 7220996
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of cryogenic blockade of a non-specific thalamo-orbito-cortical synchronizing system upon sensory evoked potentials.
    Skinner JE; Lindsley DB
    Electroencephalogr Clin Neurophysiol; 1969 Mar; 26(3):333-4. PubMed ID: 4184693
    [No Abstract]   [Full Text] [Related]  

  • 4. Computer analysis of subcortical and cortical evoked potentials and of slow potential phenomena in humans.
    Haider M; Ganglberger JA; Groll-Knapp E
    Confin Neurol; 1972; 34(1):224-9. PubMed ID: 5084389
    [No Abstract]   [Full Text] [Related]  

  • 5. Cerebral potentials preceding right and left unilateral and bilateral finger movements in sinistrals.
    Kristeva R; Deecke L
    Prog Brain Res; 1980; 54():748-54. PubMed ID: 7220995
    [No Abstract]   [Full Text] [Related]  

  • 6. Alteration of motor and somesthetic thalamo-cortical responsiveness during wakefulness and sleep.
    Steriade M
    Electroencephalogr Clin Neurophysiol; 1969 Mar; 26(3):334. PubMed ID: 4183448
    [No Abstract]   [Full Text] [Related]  

  • 7. Neural mechanisms underlying immediate and final action goals in object use reflected by slow wave brain potentials.
    van Schie HT; Bekkering H
    Brain Res; 2007 May; 1148():183-97. PubMed ID: 17412310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential topography of human eye movement potentials preceding visually triggered and self-initiated saccades.
    Kurtzberg D; Vaughan HG
    Prog Brain Res; 1980; 54():203-8. PubMed ID: 7220917
    [No Abstract]   [Full Text] [Related]  

  • 9. Computer analysis of subcortical and cortical evoked potentials and of slow potential phenomena in humans.
    Haider M; Ganglberger JA; Groll-Knapp E
    Confin Neurol; 1972; 34(2):224-9. PubMed ID: 4666060
    [No Abstract]   [Full Text] [Related]  

  • 10. Slow potentials in the human subthalamus associated with rapid arm movements.
    Straschill M; Takahashi H
    Prog Brain Res; 1980; 54():135-9. PubMed ID: 7220909
    [No Abstract]   [Full Text] [Related]  

  • 11. Event-related potentials accompanying voluntary movement in rhesus monkeys.
    Johnson R
    Prog Brain Res; 1980; 54():70-6. PubMed ID: 7220988
    [No Abstract]   [Full Text] [Related]  

  • 12. Hemispheric involvement during a bimanual RT task: P300 and motor potential.
    Ragot R; Renault B; Rémond A
    Prog Brain Res; 1980; 54():736-41. PubMed ID: 7220993
    [No Abstract]   [Full Text] [Related]  

  • 13. Computer analysis of thalamic and cortical evoked potentials in man.
    Ganglberger J; Gestring G; Groll E; Guttmann G; Haider M
    Electroencephalogr Clin Neurophysiol; 1969 Apr; 26(4):441. PubMed ID: 4183594
    [No Abstract]   [Full Text] [Related]  

  • 14. Unified neurophysical model of EEG spectra and evoked potentials.
    Rennie CJ; Robinson PA; Wright JJ
    Biol Cybern; 2002 Jun; 86(6):457-71. PubMed ID: 12111274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in central EEG activity in relation to voluntary movement. I. Normal subjects.
    Pfurtscheller G; Aranibar A
    Prog Brain Res; 1980; 54():225-31. PubMed ID: 7220921
    [No Abstract]   [Full Text] [Related]  

  • 16. Electromyographic study of motor responses following electrical stimulation of the corticospinal tract in man during stereotaxy.
    Marossero F; Cabrini GP; Ettorre G; Infuso L
    Confin Neurol; 1972; 34(2):230-6. PubMed ID: 4579794
    [No Abstract]   [Full Text] [Related]  

  • 17. Physiologic basis of emotional expression: evoked potential and mirror focus studies in rhesus monkeys.
    Heath RG
    Biol Psychiatry; 1972 Aug; 5(1):15-31. PubMed ID: 4625344
    [No Abstract]   [Full Text] [Related]  

  • 18. Evoked potentials to unexpected signals--a central orientation reaction.
    Haider M; Groll E; Studynka G
    Electroencephalogr Clin Neurophysiol; 1969 Apr; 26(4):441-2. PubMed ID: 4183595
    [No Abstract]   [Full Text] [Related]  

  • 19. Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke.
    Ameli M; Grefkes C; Kemper F; Riegg FP; Rehme AK; Karbe H; Fink GR; Nowak DA
    Ann Neurol; 2009 Sep; 66(3):298-309. PubMed ID: 19798637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of some subcortical structures in hypersynchronous EEG manifestations in chronic rats [proceedings].
    Chocholová L; Kolínová M
    Act Nerv Super (Praha); 1977 May; 19(2):111-3. PubMed ID: 888645
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.