These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 722193)

  • 1. The production of hydroxamic acid metabolites of nitrosobenzene by Chlorella pyrenoidosa.
    Corbett MD; Chipko BR; Paul JH
    J Environ Pathol Toxicol; 1978; 1(3):259-66. PubMed ID: 722193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and disposition of N-hydroxylated metabolites of aniline and nitrobenzene by isolated rat hepatocytes.
    Blaauboer BJ; Van Holsteijn CW
    Xenobiotica; 1983 May; 13(5):295-302. PubMed ID: 6636826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of nitrosobenzene, phenylhydroxylamine, and aniline in the isolated perfused rat liver.
    Eyer P; Kampffmeyer H; Maister H; Rösch-Oehme E
    Xenobiotica; 1980; 10(7-8):499-516. PubMed ID: 6893777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-phenylglycolhydroxamate production by the action of transketolase on nitrosobenzene.
    Corbett MD; Chipko BR
    Biochem J; 1977 Aug; 165(2):263-7. PubMed ID: 921749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aniline-, phenylhydroxylamine-, nitrosobenzene-, and nitrobenzene-induced hemoglobin thiyl free radical formation in vivo and in vitro.
    Maples KR; Eyer P; Mason RP
    Mol Pharmacol; 1990 Feb; 37(2):311-8. PubMed ID: 2154677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic and mechanistic studies on the formation of N-phenylglycolohydroxamic acid from nitrosobenzene and pyruvate in spinach leaf homogenate.
    Tatsunami R; Yoshioka T
    J Agric Food Chem; 2006 Jan; 54(2):590-6. PubMed ID: 16417326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of nitrosobenzene to N-phenylacetohydroxamic acid by yeast pyruvate decarboxylase.
    Corbett MD; Cahoy JE; Chipko BR
    J Natl Cancer Inst; 1975 Nov; 55(5):1247-8. PubMed ID: 1206753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxamic acids (therapeutics and mechanism): chemistry, acyl nitroso, nitroxyl, reactive oxygen species, and cell signaling.
    Kovacic P; Edwards CL
    J Recept Signal Transduct Res; 2011 Feb; 31(1):10-9. PubMed ID: 20590405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of aniline metabolites to aniline-induced methemoglobinemia.
    Harrison JH; Jollow DJ
    Mol Pharmacol; 1987 Sep; 32(3):423-31. PubMed ID: 3670278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reaction of nitroxyl (HNO) with nitrosobenzene gives cupferron (N-nitrosophenylhydroxylamine).
    Shoeman DW; Nagasawa HT
    Nitric Oxide; 1998; 2(1):66-72. PubMed ID: 9706744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformation of nitroso aromatic compounds and 2-oxo acids to N-hydroxy-N-arylacylamides by thiamine-dependent enzymes in rat liver.
    Yoshioka T; Uematsu T
    Drug Metab Dispos; 1998 Jul; 26(7):705-10. PubMed ID: 9660854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa.
    Wang S; Wang X; Poon K; Wang Y; Li S; Liu H; Lin S; Cai Z
    Chemosphere; 2013 Sep; 92(11):1498-505. PubMed ID: 23648333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of chitosan on the enantioselective bioavailability of the herbicide dichlorprop to Chlorella pyrenoidosa.
    Wen Y; Yuan Y; Chen H; Xu D; Lin K; Liu W
    Environ Sci Technol; 2010 Jul; 44(13):4981-7. PubMed ID: 20536147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ring substituents on the transketolase-catalyzed conversion of nitroso aromatics to hydroxamic acids.
    Corbett MD; Corbett BR
    Biochem Pharmacol; 1986 Oct; 35(20):3613-21. PubMed ID: 3768044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual function catalysts. Dehydrogenation and asymmetric intramolecular Diels-Alder cycloaddition of N-hydroxy formate esters and hydroxamic acids: evidence for a ruthenium-acylnitroso intermediate.
    Chow CP; Shea KJ
    J Am Chem Soc; 2005 Mar; 127(11):3678-9. PubMed ID: 15771485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45.
    Somerville CC; Nishino SF; Spain JC
    J Bacteriol; 1995 Jul; 177(13):3837-42. PubMed ID: 7601851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prodrugs of nitroxyl and nitrosobenzene as cascade latentiated inhibitors of aldehyde dehydrogenase.
    Conway TT; DeMaster EG; Lee MJ; Nagasawa HT
    J Med Chem; 1998 Jul; 41(15):2903-9. PubMed ID: 9667978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Kinetics of triphosphoglyceric acid formation in Chlorella pyrenoidosa (in vivo) during alternation of light and darkness].
    Rusev R; Donev S; Bonev M; Sivriev I
    Biofizika; 1980; 25(3):446-50. PubMed ID: 7397261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and sensitive method for the microassay of nitrosobenzene plus phenylhydroxylamine in blood.
    Harrison JH; Jollow DJ
    J Chromatogr; 1983 Oct; 277():173-82. PubMed ID: 6643603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferric and cupric reductase activities by iron-limited cells of the green alga Chlorella kessleri: quantification via oxygen electrode.
    Weger HG; Walker CN; Fink MB
    Physiol Plant; 2007 Oct; 131(2):322-31. PubMed ID: 18251903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.