BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7222743)

  • 1. Leaching of a silicate and carbonate copper ore with heterotrophic fungi and bacteria, producing organic acids.
    Kiel H; Schwartz W
    Z Allg Mikrobiol; 1980; 20(10):627-36. PubMed ID: 7222743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Leaching of ores with heterotrophic microorganisms. Development of a screening method].
    Klages D; Meyer I; Schwartz W; Näveke R
    Z Allg Mikrobiol; 1981; 21(10):729-37. PubMed ID: 7039150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Leaching of uranium containing phosphorites with heterotrophic microorganisms].
    Kullmann KH; Schwartz W
    Z Allg Mikrobiol; 1982; 22(1):41-7. PubMed ID: 7072261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioremediation of metal contamination.
    Mulligan CN; Galvez-Cloutier R
    Environ Monit Assess; 2003 May; 84(1-2):45-60. PubMed ID: 12733808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beneficiation of iron ore slime using Aspergillus niger and Bacillus circulans.
    Pradhan N; Das B; Gahan CS; Kar RN; Sukla LB
    Bioresour Technol; 2006 Oct; 97(15):1876-9. PubMed ID: 16531043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosorption and solubilization of copper oxychloride fungicide by Aspergillus niger and the influence of calcium.
    Gharieb MM
    Biodegradation; 2002; 13(3):191-9. PubMed ID: 12498216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-yield production of oxalic acid for metal leaching processes by Aspergillus niger.
    Strasser H; Burgstaller W; Schinner F
    FEMS Microbiol Lett; 1994 Jun; 119(3):365-70. PubMed ID: 8050718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger.
    Bahaloo-Horeh N; Mousavi SM
    Waste Manag; 2017 Feb; 60():666-679. PubMed ID: 27825532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioleaching of copper from chalcopyrite ore by fungi.
    Rao DV; Shivannavar CT; Gaddad SM
    Indian J Exp Biol; 2002 Mar; 40(3):319-24. PubMed ID: 12635703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction of lithium from spodumene by bioleaching.
    Rezza I; Salinas E; Calvente V; Benuzzi D; Sanz de Tosetti MI
    Lett Appl Microbiol; 1997 Sep; 25(3):172-6. PubMed ID: 9351258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic acids induce tolerance to zinc- and copper-exposed fungi under various growth conditions.
    Sazanova K; Osmolovskaya N; Schiparev S; Yakkonen K; Kuchaeva L; Vlasov D
    Curr Microbiol; 2015 Apr; 70(4):520-7. PubMed ID: 25502541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger.
    Ren WX; Li PJ; Geng Y; Li XJ
    J Hazard Mater; 2009 Aug; 167(1-3):164-9. PubMed ID: 19232463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two Aspergillus nigerstrains.
    Madrigal-Arias JE; Argumedo-Delira R; Alarcón A; Mendoza-López MR; García-Barradas O; Cruz-Sánchez JS; Ferrera-Cerrato R; Jiménez-Fernández M
    Braz J Microbiol; 2015; 46(3):707-13. PubMed ID: 26413051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geochemical speciation and dynamic of copper in tropical semi-arid soils exposed to metal-bearing mine wastes.
    Perlatti F; Otero XL; Macias F; Ferreira TO
    Sci Total Environ; 2014 Dec; 500-501():91-102. PubMed ID: 25217748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamic acid leaching of synthetic covellite - A model system combining experimental data and geochemical modeling.
    Barthen R; Karimzadeh L; Gründig M; Grenzer J; Lippold H; Franke K; Lippmann-Pipke J
    Chemosphere; 2018 Apr; 196():368-376. PubMed ID: 29316462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger.
    Mulligan CN; Kamali M; Gibbs BF
    J Hazard Mater; 2004 Jul; 110(1-3):77-84. PubMed ID: 15177728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper (II) accumulation and superoxide dismutase activity during growth of Aspergillus niger B-77.
    Tsekova K; Todorova D
    Z Naturforsch C J Biosci; 2002; 57(3-4):319-22. PubMed ID: 12064734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial Bioleaching of Ag, Au and Cu from Printed Circuit Boards of Mobile Phones.
    Díaz-Martínez ME; Argumedo-Delira R; Sánchez-Viveros G; Alarcón A; Mendoza-López MR
    Curr Microbiol; 2019 May; 76(5):536-544. PubMed ID: 30796475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of Acidithiobacillus ferrooxidans strain D3-2 active in copper bioleaching from a copper mine in Chile.
    Sugio T; Wakabayashi M; Kanao T; Takeuchi F
    Biosci Biotechnol Biochem; 2008 Apr; 72(4):998-1004. PubMed ID: 18391470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore.
    Wakeman K; Auvinen H; Johnson DB
    Biotechnol Bioeng; 2008 Nov; 101(4):739-50. PubMed ID: 18496880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.