These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7222743)

  • 21. Transformation of copper oxychloride fungicide into copper oxalate by tolerant fungi and the effect of nitrogen source on tolerance.
    Gharieb MM; Ali MI; el-Shoura AA
    Biodegradation; 2004 Feb; 15(1):49-57. PubMed ID: 14971857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aspergillus niger absorbs copper and zinc from swine wastewater.
    Price MS; Classen JJ; Payne GA
    Bioresour Technol; 2001 Mar; 77(1):41-9. PubMed ID: 11211074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioleaching of nickel and cobalt from lateritic chromite overburden using the culture filtrate of Aspergillus niger.
    Biswas S; Dey R; Mukherjee S; Banerjee PC
    Appl Biochem Biotechnol; 2013 Aug; 170(7):1547-59. PubMed ID: 23700146
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accumulation and fractionation of copper, iron, manganese, and zinc in calcareous soils amended with composts.
    Zinati GM; Li Y; Bryan HH
    J Environ Sci Health B; 2001 Mar; 36(2):229-43. PubMed ID: 11409501
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial leaching of waste solder for recovery of metal.
    Hocheng H; Hong T; Jadhav U
    Appl Biochem Biotechnol; 2014 May; 173(1):193-204. PubMed ID: 24634142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger.
    Aung KM; Ting YP
    J Biotechnol; 2005 Mar; 116(2):159-70. PubMed ID: 15664080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of the Effects of Aspergillus niger and Aspergillus ficuum on the Removal of Impurities in Feldspar by Bio-beneficiation.
    Arslan V
    Appl Biochem Biotechnol; 2019 Oct; 189(2):437-447. PubMed ID: 31049882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improvement of L-lactic acid production from Jerusalem artichoke tubers by mixed culture of Aspergillus niger and Lactobacillus sp.
    Ge XY; Qian H; Zhang WG
    Bioresour Technol; 2009 Mar; 100(5):1872-4. PubMed ID: 18990562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of Aspergillus niger in recovery enhancement of valuable metals from produced red mud in Bayer process.
    Vakilchap F; Mousavi SM; Shojaosadati SA
    Bioresour Technol; 2016 Oct; 218():991-8. PubMed ID: 27450129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioleaching of manganese from a low-grade pyrolusite ore using Aspergillus niger: Process optimization and kinetic studies.
    Keshavarz S; Faraji F; Rashchi F; Mokmeli M
    J Environ Manage; 2021 May; 285():112153. PubMed ID: 33607567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments.
    Rasoulnia P; Mousavi SM
    Bioresour Technol; 2016 Sep; 216():729-36. PubMed ID: 27295250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic studies on citric acid production by Aspergillus niger. II. The two-stage process.
    Chmiel A
    Acta Microbiol Pol B; 1975; 7(4):237-42. PubMed ID: 5858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vanadium removal from LD converter slag using bacteria and fungi.
    Mirazimi SM; Abbasalipour Z; Rashchi F
    J Environ Manage; 2015 Apr; 153():144-51. PubMed ID: 25697901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ore leaching by bacteria.
    Lundgren DG; Silver M
    Annu Rev Microbiol; 1980; 34():263-83. PubMed ID: 7002025
    [No Abstract]   [Full Text] [Related]  

  • 35. Biomining: metal recovery from ores with microorganisms.
    Schippers A; Hedrich S; Vasters J; Drobe M; Sand W; Willscher S
    Adv Biochem Eng Biotechnol; 2014; 141():1-47. PubMed ID: 23793914
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioremediation of copper-contaminated soils by bacteria.
    Cornu JY; Huguenot D; Jézéquel K; Lollier M; Lebeau T
    World J Microbiol Biotechnol; 2017 Feb; 33(2):26. PubMed ID: 28044274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications.
    Jarošíková A; Ettler V; Mihaljevič M; Kříbek B; Mapani B
    J Environ Manage; 2017 Feb; 187():178-186. PubMed ID: 27889660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Bioleaching kinetic of a pyrite mining residue using organic wastes as culture media for Acidithiobacillus ferrooxidans].
    Drogui P; Picher S; Mercier G; Blais JF
    Environ Technol; 2003 Nov; 24(11):1413-23. PubMed ID: 14733394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes.
    Del Mundo Dacera D; Babel S
    Bioresour Technol; 2008 Apr; 99(6):1682-9. PubMed ID: 17512728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biosorption of copper by wine-relevant lactobacilli.
    Schut S; Zauner S; Hampel G; König H; Claus H
    Int J Food Microbiol; 2011 Jan; 145(1):126-31. PubMed ID: 21195499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.