These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7222743)

  • 41. Biosorption of copper by wine-relevant lactobacilli.
    Schut S; Zauner S; Hampel G; König H; Claus H
    Int J Food Microbiol; 2011 Jan; 145(1):126-31. PubMed ID: 21195499
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The citric acid fermentation by Aspergillus niger: regulation by zinc of growth and acidogenesis.
    Wold WS; Suzuki I
    Can J Microbiol; 1976 Aug; 22(8):1083-92. PubMed ID: 963622
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Production of gibberellic acid by Aspergillus niger using some food industry wastes.
    Cihangir N; Aksöz N
    Acta Microbiol Pol; 1996; 45(3-4):291-7. PubMed ID: 9127484
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biogeochemical spatio-temporal transformation of copper in Aspergillus niger colonies grown on malachite with different inorganic nitrogen sources.
    Fomina M; Bowen AD; Charnock JM; Podgorsky VS; Gadd GM
    Environ Microbiol; 2017 Mar; 19(3):1310-1321. PubMed ID: 28063182
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biosequestration of copper by bacteria isolated from an abandoned mine by using microbially induced calcite precipitation.
    Kang CH; Shin Y; Anbu P; Nam IH; So JS
    J Gen Appl Microbiol; 2016 Sep; 62(4):206-12. PubMed ID: 27488956
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation for rock phosphate solubilization in fermentation and soil-plant system using a stress-tolerant phosphate-solubilizing Aspergillus niger WHAK1.
    Xiao C; Zhang H; Fang Y; Chi R
    Appl Biochem Biotechnol; 2013 Jan; 169(1):123-33. PubMed ID: 23229476
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of mineral constituents in the bioleaching of uranium from uraniferous sedimentary rock samples, Southwestern Sinai, Egypt.
    Amin MM; Elaassy IE; El-Feky MG; Sallam AS; Talaat MS; Kawady NA
    J Environ Radioact; 2014 Aug; 134():76-82. PubMed ID: 24682031
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Leaching of copper ore of the Udokanskoe deposit at low temperatures by an association of acidophilic chemolithotrophic microorganisms].
    Kondrat'eva TF; Pivovarova TA; Krylova LN; Melamud VS; Adamov EV; Karavaĭko GI
    Prikl Biokhim Mikrobiol; 2011; 47(5):572-8. PubMed ID: 22232899
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancement of leaching copper by electro-oxidation from metal powders of waste printed circuit board.
    Ping Z; ZeYun F; Jie L; Qiang L; Guangren Q; Ming Z
    J Hazard Mater; 2009 Jul; 166(2-3):746-50. PubMed ID: 19157692
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetic modeling for the biosorption of copper by pretreated Aspergillus niger biomass.
    Mukhopadhyay M; Noronha SB; Suraishkumar GK
    Bioresour Technol; 2007 Jul; 98(9):1781-7. PubMed ID: 16996263
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synergistic action of both Aspergillus niger and Burkholderia cepacea in co-culture increases phosphate solubilization in growth medium.
    Braz RR; Nahas E
    FEMS Microbiol Lett; 2012 Jul; 332(1):84-90. PubMed ID: 22530871
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Copper removal from aqueous solution using Aspergillus niger mycelia in free and polyurethane-bound form.
    Tsekova K; Ilieva S
    Appl Microbiol Biotechnol; 2001 May; 55(5):636-7. PubMed ID: 11414333
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimization of Fermentation Medium for Extracellular Lipase Production from Aspergillus niger Using Response Surface Methodology.
    Jia J; Yang X; Wu Z; Zhang Q; Lin Z; Guo H; Lin CS; Wang J; Wang Y
    Biomed Res Int; 2015; 2015():497462. PubMed ID: 26366414
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biosynthesis of copper carbonate nanoparticles by ureolytic fungi.
    Li Q; Gadd GM
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7397-7407. PubMed ID: 28799032
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Potential for land application of contaminated sewage sludge treated with fermented liquid from pineapple wastes.
    Del Mundo Dacera D; Babel S; Parkpian P
    J Hazard Mater; 2009 Aug; 167(1-3):866-72. PubMed ID: 19232826
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture.
    Wang J; Bai J; Xu J; Liang B
    J Hazard Mater; 2009 Dec; 172(2-3):1100-5. PubMed ID: 19699031
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Heavy metal leaching from aerobic and anaerobic landfill bioreactors of co-disposed municipal solid waste incineration bottom ash and shredded low-organic residues.
    Inanc B; Inoue Y; Yamada M; Ono Y; Nagamori M
    J Hazard Mater; 2007 Mar; 141(3):793-802. PubMed ID: 17030419
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash.
    Van Zomeren A; Comans RN
    Environ Sci Technol; 2004 Jul; 38(14):3927-32. PubMed ID: 15298202
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploiting synergies of sourdough and antifungal organic acids to delay fungal spoilage of bread.
    Quattrini M; Liang N; Fortina MG; Xiang S; Curtis JM; Gänzle M
    Int J Food Microbiol; 2019 Aug; 302():8-14. PubMed ID: 30220438
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Role of microorganisms in the destruction of spodumene].
    Karavaĭko GI; Krutsko VS; Mel'nikova EO; Avakian ZA; Ostroushko IuI
    Mikrobiologiia; 1980; 49(3):547-51. PubMed ID: 6995818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.