BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7223892)

  • 1. Lactate oxidation and sodium reabsorption by dog kidney in vivo.
    Díes F; Valdez JM; Vilet R; Garza R
    Am J Physiol; 1981 Apr; 240(4):F343-51. PubMed ID: 7223892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relation of Na+ reabsorption to utilization of O2 and lactate in the perfused rat kidney.
    Cohen JJ; Merkens LS; Peterson OW
    Am J Physiol; 1980 May; 238(5):F415-27. PubMed ID: 7377350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics of tubular sodium reabsorption sensitive to ethacrynic acid and ouabain.
    Sejersted OM; Steen PA; Kiil F
    Am J Physiol; 1982 Mar; 242(3):F254-60. PubMed ID: 6278951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy requirement of sodium reabsorption in the thick ascending limb of Henle's loop in the dog kidney: effects of bumetanide and ouabain.
    Ostensen J; Stokke ES
    Acta Physiol Scand; 1996 Jun; 157(2):275-81. PubMed ID: 8800369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of furosemide and ethacrynic acid on carbohydrate and fatty acid uptake and on glycogen content of the dog kidney in vivo].
    Fülgraff G; Greven J; Holzhüter H; Nünemann H; Osswald H; Sudhoff D
    Naunyn Schmiedebergs Arch Pharmakol; 1971; 270(2):117-35. PubMed ID: 4254614
    [No Abstract]   [Full Text] [Related]  

  • 6. Multiple pumps for sodium reabsorption by the perfused kidney.
    Besarab A; Silva P; Epstein FH
    Kidney Int; 1976 Aug; 10(2):147-53. PubMed ID: 135114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of diuretics on electrolyte and lactate gradients in dog kidney.
    Cannon PJ; Dell RB; Winters RW
    J Lab Clin Med; 1968 Aug; 72(2):192-203. PubMed ID: 5671196
    [No Abstract]   [Full Text] [Related]  

  • 8. Micropuncture study of the effect of various diuretics on sodium reabsorption by the proximal tubules of the dog.
    Dirks JH; Cirksena WJ; Berliner RW
    J Clin Invest; 1966 Dec; 45(12):1875-85. PubMed ID: 5926633
    [No Abstract]   [Full Text] [Related]  

  • 9. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition.
    Layton AT; Vallon V; Edwards A
    Am J Physiol Renal Physiol; 2015 Jun; 308(12):F1343-57. PubMed ID: 25855513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactate metabolism in the isolated perfused rat kidney: relations to renal function and gluconeogenesis.
    Cohen JJ; Little JR
    J Physiol; 1976 Feb; 255(2):399-414. PubMed ID: 1255526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Influence of furosemide on oxygen consumption and electrolytes in renal cortex of the dog. Effect of ouabain and ethacrynic acid].
    de Jairala SW; Saravalli O; Palazzi J; García AP; Vergara E; Rasia M; Terán T
    Medicina (B Aires); 1978; 38(4):395-403. PubMed ID: 739877
    [No Abstract]   [Full Text] [Related]  

  • 12. Evidence for bicarbonate-dependent lithium reabsorption in dog kidneys.
    Hartmann A; Holdaas H; Steen PA; Kiil F
    Acta Physiol Scand; 1984 Feb; 120(2):257-64. PubMed ID: 6231805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of carbonic anhydrase in acute recovery following renal ischemia reperfusion injury.
    Nensén O; Hansell P; Palm F
    PLoS One; 2019; 14(8):e0220185. PubMed ID: 31465457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the oxidation rates of glucose and lactate in relation to support of Na+ reabsorption.
    Cohen JJ; Gregg CM; Merkens LS; Brand PH; Garza-Quintero R; Pashley DH; Black AJ
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():418-23. PubMed ID: 616375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship among gluconeogenesis, QO2, and Na+ transport in the perfused rat kidney.
    Silva P; Hallac R; Spokes K; Epstein FH
    Am J Physiol; 1982 May; 242(5):F508-13. PubMed ID: 7081437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal Na,K-adenosine triphosphatase transport rate limits transcellular NaCl reabsorption in distal nephrons of volume-expanded dogs.
    Kiil F; Hartmann A; Langberg H; Sejersted OM; Holthe MR
    J Pharmacol Exp Ther; 1986 Jul; 238(1):327-33. PubMed ID: 3014121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethacrynic acid inhibits transcellular NaCl reabsorption in dog kidneys in doses of 1 to 10 mg.kg-1 and proximal bicarbonate-dependent reabsorption at higher doses.
    Steen PA; Hartmann A; Kiil F
    J Pharmacol Exp Ther; 1981 Nov; 219(2):505-9. PubMed ID: 6793717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional differences of ouabain and ethacrynic acid on renal potassium metabolism in dogs.
    Sejersted OM; Holdaas H; Monclair T
    Scand J Clin Lab Invest; 1978 Nov; 38(7):603-14. PubMed ID: 152453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ouabain, furosemide, ethacrynic acid and metabolic inhibitors on ion transport in dog submandibular gland in situ.
    Siegel IA
    Arch Int Pharmacodyn Ther; 1972 Dec; 200(2):281-91. PubMed ID: 4645870
    [No Abstract]   [Full Text] [Related]  

  • 20. The relation between sodium transport and oxygen consumption in isolated perfused rat kidney.
    Swartz RD; Silva P; Hallac R; Epstein FH
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():123-32. PubMed ID: 616355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.