BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 7224207)

  • 1. Factors affecting the formation of chlorotrifluoroethane and chlorodifluoroethylene from halothane.
    Maiorino RM; Sipes IG; Gandolfi AJ; Brown BR; Lind RC
    Anesthesiology; 1981 May; 54(5):383-9. PubMed ID: 7224207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic differences in reductive metabolism and hepatotoxicity of halothane in three rat strains.
    Gourlay GK; Adams JF; Cousins MJ; Hall P
    Anesthesiology; 1981 Aug; 55(2):96-103. PubMed ID: 7258721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volatile metabolites and decomposition products of halothane in man.
    Sharp JH; Trudell JR; Cohen EN
    Anesthesiology; 1979 Jan; 50(1):2-8. PubMed ID: 760598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effect of paraquat on biotransformation of halothane in rabbit liver microsomes.
    Kawamoto M; Fujii K; Yuge O; Morio M
    Hiroshima J Med Sci; 1989 Dec; 38(4):161-7. PubMed ID: 2637243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutagenicity studies with volatile metabolites of halothane.
    Edmunds HN; Baden JM; Simmon VF
    Anesthesiology; 1979 Nov; 51(5):424-9. PubMed ID: 386857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of piperonyl butoxide on halothane hepatotoxicity and metabolism in the hyperthyroid rat.
    Smith AC; Roberts SM; Berman LM; Harbison RD; James RC
    Toxicology; 1988 Jun; 50(1):95-105. PubMed ID: 3388433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reductive halothane metabolite formation and halothane binding in rat hepatic microsomes.
    Baker MT; Van Dyke RA
    Chem Biol Interact; 1984 Apr; 49(1-2):121-32. PubMed ID: 6722932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic activation of the halothane metabolite, [14C]2-chloro-1,1-difluoroethene, in hepatic microsomes.
    Baker MT; Bates JN
    Drug Metab Dispos; 1988; 16(2):169-72. PubMed ID: 2898328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the reductive metabolism of halothane by microsomal cytochrome b5 in rat liver.
    Tamura S; Kawata S; Sugiyama T; Tarui S
    Biochim Biophys Acta; 1987 Dec; 926(3):231-8. PubMed ID: 3689822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of reductive dehalogenation of halothane by liver cytochrome P450.
    Ahr HJ; King LJ; Nastainczyk W; Ullrich V
    Biochem Pharmacol; 1982 Feb; 31(3):383-90. PubMed ID: 7073765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoflurane acts as an inhibitor of oxidative dehalogenation while acting as an accelerator of reductive dehalogenation of halothane in guinea pig liver microsomes.
    Fujii K
    Toxicology; 1995 Dec; 104(1-3):123-8. PubMed ID: 8560490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the biotransformation and hepatotoxicity of halothane and deuterated halothane.
    Sipes IG; Gandolfi AJ; Pohl LR; Krishna G; Brown BR
    J Pharmacol Exp Ther; 1980 Sep; 214(3):716-20. PubMed ID: 7400974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-course of formation of volatile reductive metabolites of halothane in humans and an animal model.
    Gourlay GK; Adams JF; Cousins MJ; Sharp JH
    Br J Anaesth; 1980 Mar; 52(3):331-6. PubMed ID: 7370149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A4.
    Spracklin DK; Thummel KE; Kharasch ED
    Drug Metab Dispos; 1996 Sep; 24(9):976-83. PubMed ID: 8886607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulatory effects of halothane and isoflurane on fluoride release and cytochrome P-450 loss caused by metabolism of 2-chloro-1,1-difluoroethene, a halothane metabolite.
    Baker MT; Bates JN; Leff SV
    Anesth Analg; 1987 Nov; 66(11):1141-7. PubMed ID: 2889401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of 2-chloro-1,1-difluoroethene to glyoxylic and glycolic acid in rat hepatic microsomes.
    Baker MT; Vasquez MT; Bates JN; Chiang CK
    Drug Metab Dispos; 1990; 18(5):753-8. PubMed ID: 1981732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kidney as a novel target tissue for protein adduct formation associated with metabolism of halothane and the candidate chlorofluorocarbon replacement 2,2-dichloro-1,1,1-trifluoroethane.
    Huwyler J; Aeschlimann D; Christen U; Gut J
    Eur J Biochem; 1992 Jul; 207(1):229-38. PubMed ID: 1628651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochrome P450 inactivation during reductive metabolism of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) by phenobarbital- and pyridine-induced rat liver microsomes.
    Ferrara R; Tolando R; King LJ; Manno M
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):420-8. PubMed ID: 9144458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen concentrations required for reductive defluorination of halothane by rat hepatic microsomes.
    Lind RC; Gandolfi AJ; Sipes IG; Brown BR; Waters SJ
    Anesth Analg; 1986 Aug; 65(8):835-9. PubMed ID: 3729018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reductive metabolism of halothane by human and rabbit cytochrome P-450. Binding of 1-chloro-2,2,2-trifluoroethyl radical to phospholipids.
    Trudell JR; Bösterling B; Trevor AJ
    Mol Pharmacol; 1982 May; 21(3):710-7. PubMed ID: 7110119
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.