These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7224311)

  • 1. Electroretinographic components of the canine visual evoked response.
    Malnati GA; Marshall AE; Coulter DB
    Am J Vet Res; 1981 Jan; 42(1):159-63. PubMed ID: 7224311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waveform analysis and reproducibility of visual-evoked potentials in dogs.
    Sims MH; Laratta LJ; Bubb WJ; Morgan RV
    Am J Vet Res; 1989 Nov; 50(11):1823-8. PubMed ID: 2619111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Retinal and cortical electrical activity in man: physiologic bases and clinical applications].
    Skrandies W
    EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1991 Dec; 22(4):200-7. PubMed ID: 1786780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinal and cortical electrophysiological responses to instantaneous frequency shifts in light modulated above fusion.
    Flower RW; Bird JF; Mowbray GH
    Invest Ophthalmol; 1975 Jan; 14(1):75-8. PubMed ID: 803267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of retinal acuity in infants evaluated with pattern electroretinogram.
    Fiorentini A; Pirchio M; Sandini G
    Hum Neurobiol; 1984; 3(2):93-5. PubMed ID: 6746336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Experimental studies of the role of the adrenergic system in the development of bioelectric response of the retina and visual cortex. II. Methodology and characteristics of the ERG and VEP recording].
    Czepita D
    Klin Oczna; 1991; 93(4-5):108-10. PubMed ID: 1921214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroretinographic evaluation of Papillons with and without hereditary retinal degeneration.
    Narfström K; Ekesten B
    Am J Vet Res; 1998 Feb; 59(2):221-6. PubMed ID: 9492941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some questions concerning electroretinographic response and its variability.
    Ronchi L
    Med Res Eng; 1977 Nov; 12(5):20-4. PubMed ID: 613192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility.
    Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J
    Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of volume-conducted far-field short-latency glossopharyngeal nerve evoked potentials recorded from the scalp with similarly obtained near-field potentials from the solitary nucleus in dogs.
    Venker-van Haagen AJ; van den Brom WE; Peeters ME; Barbas-Henry HA
    Am J Vet Res; 1995 Mar; 56(3):391-7. PubMed ID: 7771710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Transient and steady-state electroretinograms and visual evoked potentials to pattern and uniform-field stimulation in humans].
    Nakayama M
    Fukuoka Igaku Zasshi; 1994 Jul; 85(7):225-34. PubMed ID: 8070753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Experimental studies of the role of the adrenergic system in the development of the bioelectric response of the retina and visual cortex. 1. Introduction].
    Czepita D
    Klin Oczna; 1989; 91(7-9):188-90. PubMed ID: 2638440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The visually evoked subcortical potential: is related to the electroretinogram?
    Rubinstein MP; Harding GF
    Invest Ophthalmol Vis Sci; 1981 Aug; 21(2):335-44. PubMed ID: 7251311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Clinical electroretinography in the dog. Part 1].
    Spiess BM; Leber-Zürcher AC
    Schweiz Arch Tierheilkd; 1991; 133(5):217-23. PubMed ID: 1896837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial masking of the canine electroretinogram by oscillatory potentials. The problem of frequency bandwidth.
    Sims MH
    J Vet Intern Med; 1990; 4(1):40-2. PubMed ID: 2308121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Recording of Electroretinography and Visual Evoked Potentials in Anesthetized Rats.
    Nguyen CT; Tsai TI; He Z; Vingrys AJ; Lee PY; Bui BV
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27404129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dark adaptation time in canine electroretinography using a contact lens electrode with a built-in light source.
    Maehara S; Itoh Y; Hoshino S; Hayashi M; Ito Y
    J Vet Med Sci; 2015 Oct; 77(10):1335-8. PubMed ID: 26074341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Timing of early activity in the visual cortex as revealed by simultaneous MEG and ERG recordings.
    Inui K; Sannan H; Miki K; Kaneoke Y; Kakigi R
    Neuroimage; 2006 Mar; 30(1):239-44. PubMed ID: 16310379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Usefulness of multimodal evoked potentials and the electroretinogram in the early diagnosis of brain death].
    Machado-Curbelo C; Román-Murga JM
    Rev Neurol; 1998 Nov; 27(159):809-17. PubMed ID: 9859157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transretinal mass receptor potentials recorded from the canine retina in vitro.
    Millichamp NJ; Arden GB
    Am J Vet Res; 1989 Oct; 50(10):1710-4. PubMed ID: 2802300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.