These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 7225085)
1. Characterization of human lymphocyte N-acetyltransferase and its relationship to the isoniazid acetylator polymorphism. McQueen CA; Weber WW Biochem Genet; 1980 Oct; 18(9-10):889-904. PubMed ID: 7225085 [TBL] [Abstract][Full Text] [Related]
3. Kinetic characterization of acetylator genotype-dependent and -independent N-acetyltransferase isozymes in homozygous rapid and slow acetylator inbred hamster liver cytosol. Trinidad A; Kirlin WG; Ogolla F; Andrews AF; Yerokun T; Ferguson RJ; Brady PK; Hein DW Drug Metab Dispos; 1989; 17(3):238-47. PubMed ID: 2568903 [TBL] [Abstract][Full Text] [Related]
4. Multiple N-acetyltransferases and drug metabolism. Tissue distribution, characterization and significance of mammalian N-acetyltransferase. Hearse DJ; Weber WW Biochem J; 1973 Mar; 132(3):519-26. PubMed ID: 4724587 [TBL] [Abstract][Full Text] [Related]
5. Catalytic properties and heat stabilities of novel recombinant human N-acetyltransferase 2 allozymes support existence of genetic heterogeneity within the slow acetylator phenotype. Hein DW; Doll MA Arch Toxicol; 2017 Aug; 91(8):2827-2835. PubMed ID: 28523442 [TBL] [Abstract][Full Text] [Related]
6. An enzyme marker to ensure reliable determinations of human isoniazid acetylator phenotype in vitro. Hein DW; Hirata M; Weber WW Pharmacology; 1981; 23(4):203-10. PubMed ID: 6976581 [TBL] [Abstract][Full Text] [Related]
7. Identification and kinetic characterization of acetylator genotype-dependent and -independent arylamine carcinogen N-acetyltransferases in hamster bladder cytosol. Yerokun T; Kirlin WG; Trinidad A; Ferguson RJ; Ogolla F; Andrews AF; Brady PK; Hein DW Drug Metab Dispos; 1989; 17(3):231-7. PubMed ID: 2568902 [TBL] [Abstract][Full Text] [Related]
8. Genetically determined variability in acetylation and oxidation. Therapeutic implications. Clark DW Drugs; 1985 Apr; 29(4):342-75. PubMed ID: 2859977 [TBL] [Abstract][Full Text] [Related]
9. Isoniazid disposition, comparison of isoniazid phenotyping methods in and acetylator distribution of Japanese patients with idiopathic systemic lupus erythematosus and control subjects. Horai Y; Ishizaki T; Sasaki T; Koya G; Matsuyama K; Iguchi S Br J Clin Pharmacol; 1982 Mar; 13(3):361-74. PubMed ID: 7059436 [TBL] [Abstract][Full Text] [Related]
10. Metabolic activation of N-hydroxy-2-aminofluorene and N-hydroxy-2-acetylaminofluorene by monomorphic N-acetyltransferase (NAT1) and polymorphic N-acetyltransferase (NAT2) in colon cytosols of Syrian hamsters congenic at the NAT2 locus. Hein DW; Doll MA; Gray K; Rustan TD; Ferguson RJ Cancer Res; 1993 Feb; 53(3):509-14. PubMed ID: 8425184 [TBL] [Abstract][Full Text] [Related]
11. Biochemical evidence for the coexistence of monomorphic and polymorphic N-acetyltransferase activities on a common protein in rabbit liver. Hein DW; Hirata M; Glowinski IB; Weber WW J Pharmacol Exp Ther; 1982 Jan; 220(1):1-7. PubMed ID: 7053406 [TBL] [Abstract][Full Text] [Related]
12. Identification of genetically homozygous rapid and slow acetylators of drugs and environmental carcinogens among established inbred rabbit strains. Hein DW; Smolen TN; Fox RR; Weber WW J Pharmacol Exp Ther; 1982 Oct; 223(1):40-4. PubMed ID: 7120125 [TBL] [Abstract][Full Text] [Related]
14. Acetylator genotype-dependent expression of arylamine N-acetyltransferase in human colon cytosol from non-cancer and colorectal cancer patients. Kirlin WG; Ogolla F; Andrews AF; Trinidad A; Ferguson RJ; Yerokun T; Mpezo M; Hein DW Cancer Res; 1991 Jan; 51(2):549-55. PubMed ID: 1985773 [TBL] [Abstract][Full Text] [Related]
15. [Detection of mutation in NAT II gene as a method of determination of izoniazyd (INH) acetylation type in human population]. Augustynowicz-Kopeć E; Zabost A; Kozińska M; Brzezińska S; Zwolska Z Pneumonol Alergol Pol; 2007; 75(2):134-9. PubMed ID: 17973219 [TBL] [Abstract][Full Text] [Related]
16. Comparison between serum isonicotinic acid hydrazide (INH) levels and urinary sulfadimidine (sulfamethazine) acetylation as predictors of INH acetylator status. Seth V; Seth SD; Beotra A; Singh U Dev Pharmacol Ther; 1988; 11(1):32-6. PubMed ID: 3383719 [TBL] [Abstract][Full Text] [Related]
17. A unique pharmacogenetic expression of the N-acetylation polymorphism in the inbred hamster. Hein DW; Omichinski JG; Brewer JA; Weber WW J Pharmacol Exp Ther; 1982 Jan; 220(1):8-15. PubMed ID: 7053425 [TBL] [Abstract][Full Text] [Related]
18. [Bioavailability of isoniazid in healthy volunteers--fast and slow INH acetylators]. Augustynowicz-Kopeć E; Zwolska Z; Niemirowska-Mikulska H Pneumonol Alergol Pol; 2002; 70(3-4):167-79. PubMed ID: 12271964 [TBL] [Abstract][Full Text] [Related]
19. Genetic control of acetyl coenzyme A-dependent arylamine N-acetyltransferase, hydrazine N-acetyltransferase, and N-hydroxy-arylamine O-acetyltransferase enzymes in C57BL/6J, A/J, AC57F1, and the rapid and slow acetylator A.B6 and B6.A congenic inbred mouse. Hein DW; Trinidad A; Yerokun T; Ferguson RJ; Kirlin WG; Weber WW Drug Metab Dispos; 1988; 16(3):341-7. PubMed ID: 2900723 [TBL] [Abstract][Full Text] [Related]