BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7225325)

  • 1. On the cofactor specificity of glycinamide ribonucleotide and 5-aminoimidazole-4-carboxamide ribonucleotide transformylase from chicken liver.
    Smith GK; Mueller WT; Benkovic PA; Benkovic SJ
    Biochemistry; 1981 Mar; 20(5):1241-5. PubMed ID: 7225325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the purification and mechanism of action of 5-aminoimidazole-4-carboxamide-ribonucleotide transformylase from chicken liver.
    Mueller WT; Benkovic SJ
    Biochemistry; 1981 Jan; 20(2):337-44. PubMed ID: 7470484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of chicken liver 5-aminoimidazole-4-carboxamide ribonucleotide transformylase by 5,8-dideaza analogues of folic acid.
    Mueller WT; Smith GK; Benkovic SJ; Hynes JB
    Biochem Pharmacol; 1988 Feb; 37(3):449-51. PubMed ID: 3337744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L(-)-10-Formyltetrahydrofolate is the cofactor for glycinamide ribonucleotide transformylase from chicken liver.
    Smith GK; Benkovic PA; Benkovic SJ
    Biochemistry; 1981 Jul; 20(14):4034-6. PubMed ID: 7284307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An antibody probe to determine the native species of glycinamide ribonucleotide transformylase in chicken liver.
    Young M; Sammons RD; Mueller WT; Benkovic SJ
    Biochemistry; 1984 Aug; 23(17):3979-86. PubMed ID: 6386041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and mechanistic studies on the HeLa and chicken liver proteins that catalyze glycinamide ribonucleotide synthesis and formylation and aminoimidazole ribonucleotide synthesis.
    Daubner SC; Young M; Sammons RD; Courtney LF; Benkovic SJ
    Biochemistry; 1986 May; 25(10):2951-7. PubMed ID: 3718932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate specificity of glycinamide ribonucleotide transformylase from chicken liver.
    Antle VD; Liu D; McKellars BR; Caperelli CA; Hua M; Vince R
    J Biol Chem; 1996 Mar; 271(11):6045-9. PubMed ID: 8626389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct transfer of one-carbon units in the transformylations of de novo purine biosynthesis.
    Smith GK; Mueller WT; Slieker LJ; DeBrosse CW; Benkovic SJ
    Biochemistry; 1982 Jun; 21(12):2870-4. PubMed ID: 7104299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cofactor role for 10-formyldihydrofolic acid.
    Baggott JE; Johanning GL; Branham KE; Prince CW; Morgan SL; Eto I; Vaughn WH
    Biochem J; 1995 Jun; 308 ( Pt 3)(Pt 3):1031-6. PubMed ID: 8948466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of HKSV28 cell growth by 5,11-methenyl-tetrahydrohomofolate.
    Slieker LJ; Benkovic SJ
    Mol Pharmacol; 1984 Mar; 25(2):294-302. PubMed ID: 6700575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N10-substituted 5,8-dideazafolate inhibitors of glycinamide ribonucleotide transformylase.
    Caperelli CA
    J Med Chem; 1987 Jul; 30(7):1254-6. PubMed ID: 3599031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nitrous oxide-induced inactivation of vitamin B12 on glycinamide ribonucleotide transformylase and 5-amino-4-imidazole carboxamide transformylase.
    Deacon R; Perry J; Lumb M; Chanarin I
    Biochem Biophys Res Commun; 1983 Apr; 112(1):327-31. PubMed ID: 6838615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and biological activity of an acyclic analogue of 5,6,7,8-tetrahydrofolic acid, N-[4-[[3-(2,4-diamino-1,6-dihydro-6-oxo-5- pyrimidinyl)propyl]amino]-benzoyl]-L-glutamic acid.
    Kelley JL; McLean EW; Cohn NK; Edelstein MP; Duch DS; Smith GK; Hanlon MH; Ferone R
    J Med Chem; 1990 Feb; 33(2):561-7. PubMed ID: 2299624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that the folate-requiring enzymes of de novo purine biosynthesis are encoded by individual mRNAs.
    Wasserman GF; Mueller WT; Benkovic SJ; Liao WS; Taylor J
    Biochemistry; 1984 Dec; 23(26):6704-10. PubMed ID: 6335666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multifunctional protein possessing glycinamide ribonucleotide synthetase, glycinamide ribonucleotide transformylase, and aminoimidazole ribonucleotide synthetase activities in de novo purine biosynthesis.
    Daubner SC; Schrimsher JL; Schendel FJ; Young M; Henikoff S; Patterson D; Stubbe J; Benkovic SJ
    Biochemistry; 1985 Dec; 24(25):7059-62. PubMed ID: 4084560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcloning, characterization, and affinity labeling of Escherichia coli glycinamide ribonucleotide transformylase.
    Inglese J; Johnson DL; Shiau A; Smith JM; Benkovic SJ
    Biochemistry; 1990 Feb; 29(6):1436-43. PubMed ID: 2185839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the enzyme complex involving the folate-requiring enzymes of de novo purine biosynthesis.
    Smith GK; Mueller WT; Wasserman GF; Taylor WD; Benkovic SJ
    Biochemistry; 1980 Sep; 19(18):4313-21. PubMed ID: 7417406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of a multifunctional protein with aminoimidazole ribonucleotide synthetase, glycinamide ribonucleotide synthetase, and glycinamide ribonucleotide transformylase activities: characterization of aminoimidazole ribonucleotide synthetase.
    Schrimsher JL; Schendel FJ; Stubbe J
    Biochemistry; 1986 Jul; 25(15):4356-65. PubMed ID: 3756144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a novel glycinamide ribonucleotide transformylase in Escherichia coli.
    Nygaard P; Smith JM
    J Bacteriol; 1993 Jun; 175(11):3591-7. PubMed ID: 8501063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of 5,11-methenyltetrahydrohomofolate and its antifolate activity in vitro.
    Caperelli CA; Domanico P; Benkovic SJ
    J Med Chem; 1981 Sep; 24(9):1086-8. PubMed ID: 7288824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.