BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 7225329)

  • 1. Glutamate formed from lignoceric acid by rat brain preparation in the presence of pyridine nucleotide and cytosolic factors: a brain-specific oxidation of very long chain fatty acids.
    Uda M; Singh I; Kishimoto Y
    Biochemistry; 1981 Mar; 20(5):1295-300. PubMed ID: 7225329
    [No Abstract]   [Full Text] [Related]  

  • 2. Further characterization of the heat-stable factor in the alpha-hydroxylation and oxidation of lignoceric acid in brain: effect of acidic amino acids and hexose-phosphates on brain fatty acid metabolism.
    Shimeno H; Okamura N; Wali A; Kishimoto Y
    Arch Biochem Biophys; 1983 May; 223(1):95-106. PubMed ID: 6859867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel synthesis of ceramide from lignoceric acid and sphingosine by rat brain preparation; the amide formation requires a pyridine nucleotide.
    Singh I; Kishimoto Y
    Biochem Biophys Res Commun; 1978 Jun; 82(4):1287-93. PubMed ID: 29620
    [No Abstract]   [Full Text] [Related]  

  • 4. Ceramide synthesis from free fatty acids in rat brain: function of NADPH and substrate specificity.
    Singh I
    J Neurochem; 1983 Jun; 40(6):1565-70. PubMed ID: 6854321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alpha-hydroxylation and oxidation of lignoceric acid in brain: the role of heat-stable and heat-labile factors.
    Shimeno H; Wali A; Kishimoto Y
    Neurochem Res; 1984 Feb; 9(2):181-94. PubMed ID: 6738789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha hydroxylation of lignoceric acid in brain. Subcellular localization of alpha hydroxylation and the requirement for heat-stable and heat-labile factors and sphingosine.
    Singh I; Kishimoto Y
    J Biol Chem; 1979 Aug; 254(16):7698-704. PubMed ID: 38244
    [No Abstract]   [Full Text] [Related]  

  • 7. Metabolite synthesis by rat liver cells and rat liver mitochondria.
    Sauer F; Mahadevan S
    Can J Biochem; 1973 Dec; 51(12):1567-80. PubMed ID: 4359682
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of estradiol on the levels of pyridine nucleotide coenzymes in the rat uterus.
    O'Dorisio MS; Barker KL
    Endocrinology; 1970 May; 86(5):1118-26. PubMed ID: 4392223
    [No Abstract]   [Full Text] [Related]  

  • 9. Metabolism of saturated and polyunsaturated very-long-chain fatty acids in fibroblasts from patients with defects in peroxisomal beta-oxidation.
    Street JM; Singh H; Poulos A
    Biochem J; 1990 Aug; 269(3):671-7. PubMed ID: 2117919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of cerebronic acid from lignoceric acid by rat brain preparation. Some properties and distribution of the -hydroxylation system.
    Hoshi M; Kishimoto Y
    J Biol Chem; 1973 Jun; 248(11):4123-30. PubMed ID: 4145326
    [No Abstract]   [Full Text] [Related]  

  • 11. Equilibrium kinetic study of the catalytic mechanism of oxidative deamination of alanine by bovine liver glutamate dehydrogenase.
    Silverstein E; Sulebele G
    Biochemistry; 1974 Apr; 13(9):1815-8. PubMed ID: 4151742
    [No Abstract]   [Full Text] [Related]  

  • 12. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS.
    BALAZS R
    Biochem J; 1965 May; 95(2):497-508. PubMed ID: 14340100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mechanisms of the initiation of lipid peroxidation in the synaptosomes of marine teleosts].
    Kreps EM; Tiurin VA; Chelomin VP; Gorbunov NV; Nalivaeva NN
    Zh Evol Biokhim Fiziol; 1987; 23(4):461-7. PubMed ID: 3673367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A radioenzymatic ultramicro method applicable to the measurement of a wide range of metabolites.
    Berry MN; Mazzachi RD; Chalmers AH
    Anal Biochem; 1981 Dec; 118(2):344-52. PubMed ID: 6121519
    [No Abstract]   [Full Text] [Related]  

  • 15. The oxidoreduction state of free NAD(P) and mass-action ratio of total nicotinamide nucleotides in isolated rat-liver mitochondria.
    Hoek JB; Tager JM
    Biochim Biophys Acta; 1973 Nov; 325(2):197-212. PubMed ID: 4148618
    [No Abstract]   [Full Text] [Related]  

  • 16. Th control of isocitrate oxidation by rat liver mitochondria.
    Nicholls DG RAND PB
    Biochem J; 1969 Sep; 114(2):215-25. PubMed ID: 4390210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of quinolinic acid on the free and total nicotinamide-adenine dinucleotides of rat liver.
    Williamson DH; Mayor F; Veloso D
    Hoppe Seylers Z Physiol Chem; 1970 Mar; 351(3):287. PubMed ID: 4392987
    [No Abstract]   [Full Text] [Related]  

  • 18. Bound and unbound pyridine dinucleotides in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Canepa L; Ferraris AM; Miglino M; Gaetani GF
    Biochim Biophys Acta; 1991 May; 1074(1):101-4. PubMed ID: 2043659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Desaturation and saturation of fatty acids by sheep rumen bacteria: optimal conditions and cofactor requirements.
    Sklan D; Budowski P
    J Dairy Sci; 1974 Jan; 57(1):56-60. PubMed ID: 4149299
    [No Abstract]   [Full Text] [Related]  

  • 20. Role of reducing equivalents from fatty acid oxidation in mixed-function oxidation: studies with 2-bromooctanoate in the perfused rat liver.
    Danis M; Kauffman FC; Evans RK; Thurman RG
    J Pharmacol Exp Ther; 1981 Nov; 219(2):383-8. PubMed ID: 7288627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.