These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7225363)

  • 1. Structural studies of A-form sodium deoxyribonucleic acid: phosphorus-31 nuclear magnetic resonance of oriented fibers.
    Nall BT; Rothwell WP; Waugh JS; Rupprecht A
    Biochemistry; 1981 Mar; 20(7):1881-7. PubMed ID: 7225363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonuniform backbone conformation of deoxyribonucleic acid indicated by phosphorus-31 nuclear magnetic resonance chemical shift anisotropy.
    Shindo H; Wooten JB; Pheiffer BH; Zimmerman SB
    Biochemistry; 1980 Feb; 19(3):518-26. PubMed ID: 7356944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Left-handed deoxyribonucleic acid double helix in solution.
    Mitra CK; Sarma MH; Sarma RH
    Biochemistry; 1981 Mar; 20(7):2036-41. PubMed ID: 7225372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deoxyribonucleic acid dynamics from phosphorus-31 nuclear magnetic resonance.
    Opella SJ; Wise WB; DiVerdi JA
    Biochemistry; 1981 Jan; 20(2):284-90. PubMed ID: 7193483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus-31 nuclear magnetic resonance of highly oriented DNA fibers. 1. Static geometry of DNA double helices.
    Shindo H; Fujiwara T; Akutsu H; Matsumoto U; Kyogoku Y
    Biochemistry; 1985 Feb; 24(4):887-95. PubMed ID: 3994997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometry of the phosphodiester backbone in the A form of deoxyribonucleic acid determined by phosphorus-31 nuclear magnetic resonance spectroscopy.
    Shindo H; Wooten JB; Zimmerman SB
    Biochemistry; 1981 Feb; 20(4):745-50. PubMed ID: 7213610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus-31 nuclear magnetic resonance of highly oriented DNA fibers. 2. Molecular motions in hydrated DNA.
    Fujiwara T; Shindo H
    Biochemistry; 1985 Feb; 24(4):896-902. PubMed ID: 3994998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanics and dynamics calculations on (dA)10.(dT)10 incorporating distance constraints derived from NMR relaxation measurements.
    Behling RW; Rao SN; Kollman P; Kearns DR
    Biochemistry; 1987 Jul; 26(15):4674-81. PubMed ID: 3663617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Backbone geometry of oriented DNA fibers as revealed by 31P chemical shielding anisotropy.
    Shindo H
    Adv Biophys; 1985; 20():39-57. PubMed ID: 2422884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational transitions of the phosphodiester backbone in native DNA: two-dimensional magic-angle-spinning 31P-NMR of DNA fibers.
    Song Z; Antzutkin ON; Lee YK; Shekar SC; Rupprecht A; Levitt MH
    Biophys J; 1997 Sep; 73(3):1539-52. PubMed ID: 9284321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of the phosphate group in phospholipid bilayers. A 31P-1H transient Overhauser effect study.
    Milburn MP; Jeffrey KR
    Biophys J; 1990 Jul; 58(1):187-94. PubMed ID: 2383631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional 1H and 31P NMR spectra and restrained molecular dynamics structure of an oligodeoxyribonucleotide duplex refined via a hybrid relaxation matrix procedure.
    Powers R; Jones CR; Gorenstein DG
    J Biomol Struct Dyn; 1990 Oct; 8(2):253-94. PubMed ID: 2268403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR solution structure of the N3' --> P5' phosphoramidate duplex d(CGCGAATTCGCG)2 by the iterative relaxation matrix approach.
    Ding D; Gryaznov SM; Wilson WD
    Biochemistry; 1998 Sep; 37(35):12082-93. PubMed ID: 9724520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR studies of ion binding to Escherichia coli tRNAPhe.
    Hyde EI; Reid BR
    Biochemistry; 1985 Jul; 24(16):4315-25. PubMed ID: 3902084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural effects of the C2-methylhypoxanthine:cytosine base pair in B-DNA: A combined NMR and X-ray diffraction study of d(CGC[m2I]AATTCGCG).
    Yang D; Gao Y; Robinson H; van der Marel GA; van Boom JH; Wang AH
    Biochemistry; 1993 Aug; 32(33):8672-81. PubMed ID: 8357809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculating the response of NMR shielding tensor σ(31P) and 2J(31P,13C) coupling constants in nucleic acid phosphate to coordination of the Mg2+ cation.
    Benda L; Schneider B; Sychrovský V
    J Phys Chem A; 2011 Mar; 115(11):2385-95. PubMed ID: 21366222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct evidence for a bimorphic structure of a DNA-RNA hybrid, poly(rA).poly(dT), at high relative humidity.
    Shindo H; Matsumoto U
    J Biol Chem; 1984 Jul; 259(14):8682-4. PubMed ID: 6746619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational characteristics of deoxyribonucleic acid-butylamine complexes with C-type circular dichroism spectra. 2. A Raman spectroscopic study.
    Fish SR; Chen CY; Thomas GJ; Hanlon S
    Biochemistry; 1983 Sep; 22(20):4751-6. PubMed ID: 6626530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Internal motions in deoxyribonucleic acid II.
    Hogan ME; Jardetzky O
    Biochemistry; 1980 Jul; 19(15):3460-8. PubMed ID: 7190834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus-31 chemical-shift tensors in barium diethyl phosphate and urea-phosphoric acid: model compounds for phospholipid head-group studies.
    Herzfeld J; Griffin RG; Haberkorn RA
    Biochemistry; 1978 Jul; 17(14):2711-8. PubMed ID: 687559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.