These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 7225373)
1. The relationship between plasma membrane lipid composition and physical-chemical properties. I. Fluorescence polarization studies of fatty acid-altered EL4 tumor cell membranes. McVey E; Yguerabide J; Hanson DC; Clark WR Biochim Biophys Acta; 1981 Mar; 642(1):106-18. PubMed ID: 7225373 [TBL] [Abstract][Full Text] [Related]
2. The relationship between plasma membrane lipid composition and physical-chemical properties. III. Detailed physical and biochemical analysis of fatty acid-substituted EL4 plasma membranes. Poon R; Clark WH Biochim Biophys Acta; 1982 Jul; 689(2):230-40. PubMed ID: 6288097 [TBL] [Abstract][Full Text] [Related]
3. The relationship between plasma membrane lipid composition and physical-chemical properties. II. Effect of phospholipid fatty acid modulation on plasma membrane physical properties and enzymatic activities. Poon R; Richards JM; Clark WR Biochim Biophys Acta; 1981 Nov; 649(1):58-66. PubMed ID: 6272860 [TBL] [Abstract][Full Text] [Related]
4. Effect of dietary lipids on plasma lipoproteins and fluidity of lymphoid cell membranes in normal and leukemic mice. Damen J; De Widt J; Hilkmann H; Van Blitterswijk WJ Biochim Biophys Acta; 1988 Aug; 943(2):166-74. PubMed ID: 3401476 [TBL] [Abstract][Full Text] [Related]
6. Temperature-dependent changes in plasma-membrane lipid order and the phagocytotic activity of the amoeba Acanthamoeba castellanii are closely correlated. Avery SV; Lloyd D; Harwood JL Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):811-6. PubMed ID: 8554525 [TBL] [Abstract][Full Text] [Related]
7. The influence of saturated fatty acid modulation of bilayer physical state on cellular and membrane structure and function. Chester DW; Tourtellotte ME; Melchior DL; Romano AH Biochim Biophys Acta; 1986 Aug; 860(2):383-98. PubMed ID: 3741857 [TBL] [Abstract][Full Text] [Related]
8. Comparative lipid analysis of purified plasma membranes and shed extracellular membrane vesicles from normal murine thymocytes and leukemic GRSL cells. Van Blitterswijk WJ; De Veer G; Krol JH; Emmelot P Biochim Biophys Acta; 1982 Jun; 688(2):495-504. PubMed ID: 7104337 [TBL] [Abstract][Full Text] [Related]
9. Altered 5'-nucleotidase specific activity and distribution between two plasma membrane domains of ascites tumor cells with modified lipid composition. Haeffner EW; Seibicke S; Hoffmann CJ Int J Biochem; 1988; 20(1):55-60. PubMed ID: 2830154 [TBL] [Abstract][Full Text] [Related]
10. Specificity of memory cells raised against trinitrophenyl-conjugated syngeneic cells. Maeda T; McConnell HM Proc Natl Acad Sci U S A; 1979 Apr; 76(4):1537-41. PubMed ID: 221897 [TBL] [Abstract][Full Text] [Related]
11. Resolution of plasma membrane lipid fluidity in intact cells labelled with diphenylhexatriene. Grunberger D; Haimovitz R; Shinitzky M Biochim Biophys Acta; 1982 Jun; 688(3):764-74. PubMed ID: 7115703 [TBL] [Abstract][Full Text] [Related]
12. Effects of chronic exposure to ethanol on the physical and functional properties of the plasma membrane of S49 lymphoma cells. Bode DC; Molinoff PB Biochemistry; 1988 Jul; 27(15):5700-7. PubMed ID: 2846048 [TBL] [Abstract][Full Text] [Related]
13. Physical properties of membranes isolated from tissue culture cells with altered phospholipid composition. Schroeder F; Holland JF; Vagelos PR J Biol Chem; 1976 Nov; 251(21):6747-56. PubMed ID: 977595 [TBL] [Abstract][Full Text] [Related]
14. Dietary menhaden and corn oils and the red blood cell membrane lipid composition and fluidity in hyper- and normocholesterolemic miniature swine. Berlin E; Bhathena SJ; McClure D; Peters RC J Nutr; 1998 Sep; 128(9):1421-8. PubMed ID: 9732300 [TBL] [Abstract][Full Text] [Related]
15. Response of rat heart membranes and associated ion-transporting ATPases to dietary lipid. Abeywardena MY; McMurchie EJ; Russell GR; Sawyer WH; Charnock JS Biochim Biophys Acta; 1984 Sep; 776(1):48-59. PubMed ID: 6089884 [TBL] [Abstract][Full Text] [Related]
16. Role of cytoplasmic lipids in altering diphenylhexatriene fluorescence polarization in malignant cells. Spiegel RJ; Magrath IT; Shutta JA Cancer Res; 1981 Feb; 41(2):452-8. PubMed ID: 7448790 [TBL] [Abstract][Full Text] [Related]
17. The fluidity of plasma membranes of Dictyostelium discoideum. The effects of polyunsaturated fatty acid incorporation assessed by fluorescence depolarization and electron paramagnetic resonance. Herring FG; Tatischeff I; Weeks G Biochim Biophys Acta; 1980 Oct; 602(1):1-9. PubMed ID: 6251880 [TBL] [Abstract][Full Text] [Related]
18. Lipid dynamics and protein-lipid interactions in rat colonic epithelial cell basolateral membranes. Brasitus TA Biochim Biophys Acta; 1983 Feb; 728(1):20-30. PubMed ID: 6219701 [TBL] [Abstract][Full Text] [Related]
19. Changes in plasma membrane fluidity of Bryonia dioica internodes during thigmomorphogenesis. Mathieu C; Motta C; Hartmann MA; Thonat C; Boyer N Biochim Biophys Acta; 1995 May; 1235(2):249-55. PubMed ID: 7756332 [TBL] [Abstract][Full Text] [Related]
20. Incubation of exogenous fatty acids with lymphocytes. Changes in fatty acid composition and effects on the rotational relaxation time of 1,6-diphenyl-1,3,5-hexatriene. Stubbs CD; Tsang WM; Belin J; Smith AD; Johnson SM Biochemistry; 1980 Jun; 19(12):2756-62. PubMed ID: 7397103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]