These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 7225383)
1. Distinct mechanisms of hypoxanthine and inosine transport in membrane vesicles isolated from Chinese hamster ovary and Balb 3T3 cells. Prasad R; Shopsis C; Hochstadt J Biochim Biophys Acta; 1981 May; 643(2):306-18. PubMed ID: 7225383 [TBL] [Abstract][Full Text] [Related]
2. The existance of a group translocation transport mechanism in animal cells: uptake of the ribose moiety of inosine. Quinlan DC; Li CC; Hochstadt J J Supramol Struct; 1976; 4(4):387-99. PubMed ID: 180353 [TBL] [Abstract][Full Text] [Related]
3. Regulation of purine utilization in bacteria. VI. Characterization of hypoxanthine and guanine uptake into isolated membrane vesicles from Salmonella typhimurium. Jackman LE; Hochstadt J J Bacteriol; 1976 Apr; 126(1):312-26. PubMed ID: 770425 [TBL] [Abstract][Full Text] [Related]
4. Facilitated transport of inosine and uridine in cultured mammalian cells is independent of nucleoside phosphorylases. Plagemann PG; Wohlhueter RM; Erbe J Biochim Biophys Acta; 1981 Jan; 640(2):448-62. PubMed ID: 6783140 [TBL] [Abstract][Full Text] [Related]
5. Group translocation of the ribose moiety of inosine by vesicles of plasma membrane from T(3 cells transformed by Simian virus 40. Quinlan DC; Hochstadt J J Biol Chem; 1976 Jan; 251(2):344-54. PubMed ID: 173717 [TBL] [Abstract][Full Text] [Related]
6. N6-Methyladenosine inhibition of hypoxanthine uptake by Chinese hamster ovary cells. Holland MJ; Schein R; Murphy E Res Commun Chem Pathol Pharmacol; 1983 Jul; 41(1):111-24. PubMed ID: 6622825 [TBL] [Abstract][Full Text] [Related]
7. Metabolic properties of an azaguanine-resistant variant of Chinese hamster ovary cells (azarts) with normal levels of hypoxanthine-guanine phosphoribosyltransferase activity. Plagemann PG; Wohlhueter RM J Cell Biochem; 1985; 27(2):109-20. PubMed ID: 3988817 [TBL] [Abstract][Full Text] [Related]
8. Alpha-5-phosphoribosyl-1-pyrophosphate-independent salvage of purines in cultured Chinese hamster lung fibroblasts. Camici M; Mura U; Cellini F; Del Corso A; Turchi G; Ipata PL Arch Biochem Biophys; 1988 Sep; 265(2):234-40. PubMed ID: 2458698 [TBL] [Abstract][Full Text] [Related]
9. The function and activity of certain membrane enzymes when localized on- and off- the membrane. Hochstadt J; Quinlan D J Cell Physiol; 1976 Dec; 89(4):839-52. PubMed ID: 827551 [TBL] [Abstract][Full Text] [Related]
10. Metabolic fate of hypoxanthine and inosine in cultured cardiomyocytes. Zoref-Shani E; Bromberg Y; Shirin C; Sidi Y; Sperling O J Mol Cell Cardiol; 1992 Feb; 24(2):183-9. PubMed ID: 1583701 [TBL] [Abstract][Full Text] [Related]
11. Nucleoside transport in cultured mammalian cells. Multiple forms with different sensitivity to inhibition by nitrobenzylthioinosine or hypoxanthine. Plagemann PG; Wohlhueter RM Biochim Biophys Acta; 1984 Jun; 773(1):39-52. PubMed ID: 6733097 [TBL] [Abstract][Full Text] [Related]
12. Transport of adenine, hypoxanthine and uracil into Escherichia coli. Burton K Biochem J; 1977 Nov; 168(2):195-204. PubMed ID: 413544 [TBL] [Abstract][Full Text] [Related]
13. Hypoxanthine phosphoribosyltransferase and hypoxanthine uptake in human erythrocytes. Gutensohn W Hoppe Seylers Z Physiol Chem; 1975 Jul; 356(7):1105-12. PubMed ID: 1193538 [TBL] [Abstract][Full Text] [Related]
14. Regulation of purine utilization in bacteria. VII. Involvement of membrane-associated nucleoside phosphorylase in the uptake and the base-mediated loss of the ribose moiety of nucleosides by Salmonella typhimurium membrane vesicles. Rader RL; Hochstadt J J Bacteriol; 1976 Oct; 128(1):290-301. PubMed ID: 789336 [TBL] [Abstract][Full Text] [Related]
15. Purine nucleoside phosphorylase. Inosine hydrolysis, tight binding of the hypoxanthine intermediate, and third-the-sites reactivity. Kline PC; Schramm VL Biochemistry; 1992 Jul; 31(26):5964-73. PubMed ID: 1627539 [TBL] [Abstract][Full Text] [Related]
16. The specificity of purine base and nucleoside uptake in promastigotes of Leishmania braziliensis panamensis. Hansen BD; Perez-Arbelo J; Walkony JF; Hendricks LD Parasitology; 1982 Oct; 85 (Pt 2)():271-82. PubMed ID: 7145470 [TBL] [Abstract][Full Text] [Related]
17. Hypoxanthine-guanine exchange by intact human erythrocytes. Salerno C; Giacomello A Biochemistry; 1985 Mar; 24(6):1306-9. PubMed ID: 3986179 [TBL] [Abstract][Full Text] [Related]
18. Membrane-associated enzymes involved in nucleoside processing by plasma membrane vesicles isolated from L929 cells grown in defined medium. Li CC; Hochstadt J J Biol Chem; 1976 Feb; 251(4):1181-7. PubMed ID: 814124 [TBL] [Abstract][Full Text] [Related]
19. Regulation of purine nucleotide synthesis. Effects of inosine on normal and hypoxantine-guanine phosphoribosyltransferase-deficient fibroblasts. Becker MA Biochim Biophys Acta; 1976 Jun; 435(2):132-44. PubMed ID: 938674 [TBL] [Abstract][Full Text] [Related]
20. An altered rate of uridine transport in membrane vesicles isolated from growing and quiescent mouse 3T3 fibroblast cells. Quinlan DC; Hochstadt J Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5000-3. PubMed ID: 4531032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]