These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 7225518)

  • 1. Diffusion-controlled effects in reversible enzymatic fast reaction systems--critical spherical shell and proximity rate constant.
    Chou KC; Forsén S
    Biophys Chem; 1980 Dec; 12(3-4):255-63. PubMed ID: 7225518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion-controlled reactions of enzymes. An approximate analytic solution of Chou's model.
    Zhou G; Wong MT; Zhou GQ
    Biophys Chem; 1983 Sep; 18(2):125-32. PubMed ID: 6626685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The kinetics of the combination reaction between enzyme and substrate.
    Kuo-Chen C
    Sci Sin; 1976; 19(4):505-28. PubMed ID: 824728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The quantitative relations between diffusion-controlled reaction rate and characteristic parameters in enzyme-substrate reaction systems. I. Neutral substrates.
    Li TT; Chou KC
    Sci Sin; 1976; 19(1):117-36. PubMed ID: 1273571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion-controlled reactions of enzymes. A comparison between Chou's model and Alberty-Hammes-Eigen's model.
    Zhou GQ; Zhong WZ
    Eur J Biochem; 1982 Nov; 128(2-3):383-7. PubMed ID: 7151785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The critical spherical shell in enzymatic fast reaction systems.
    Chou KC; Li TT; Forsén S
    Biophys Chem; 1980 Dec; 12(3-4):265-9. PubMed ID: 7225519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary optimization of the catalytic efficiency of enzymes.
    Pettersson G
    Eur J Biochem; 1992 May; 206(1):289-95. PubMed ID: 1587280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulations of single- and multistep enzyme-catalyzed reaction sequences: effects of diffusion, cell size, enzyme fluctuations, colocalization, and segregation.
    Anderson JB; Anderson LE; Kussmann J
    J Chem Phys; 2010 Jul; 133(3):034104. PubMed ID: 20649305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic diffusion-reaction coupling in steady-state enzyme kinetics.
    Berg OG; Ehrenberg M
    Biophys Chem; 1983 Jan; 17(1):13-28. PubMed ID: 6824760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic parameters of enzymatic reactions in states of maximal activity; an evolutionary approach.
    Heinrich R; Hoffmann E
    J Theor Biol; 1991 Jul; 151(2):249-83. PubMed ID: 1943142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding supported reactions in spherical compartments: a general algorithm to model and determine rate constants, diffusion coefficients, and spatial product distributions.
    Egelhaaf HJ; Rademann J
    J Comb Chem; 2005; 7(6):929-41. PubMed ID: 16283804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary dynamics of enzymes.
    Demetrius L
    Protein Eng; 1995 Aug; 8(8):791-800. PubMed ID: 8637848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of enzyme catalytic power. Characteristics of optimal catalysis evaluated for the simplest plausible kinetic model.
    Brocklehurst K
    Biochem J; 1977 Apr; 163(1):111-6. PubMed ID: 869911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite concentration effects on diffusion-controlled reactions.
    Senapati S; Wong CF; McCammon JA
    J Chem Phys; 2004 Oct; 121(16):7896-900. PubMed ID: 15485251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate.
    ter Kuile BH; Cook M
    Biochim Biophys Acta; 1994 Aug; 1193(2):235-9. PubMed ID: 8054344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The quantitative relations between diffusion-controlled reaction rate and characteristic parameters in enzyme-substrate reactions systems. II. Charged substrates.
    Kuo-chen C; Chih-kun K
    Sci Sin; 1975; 18(3):367-80. PubMed ID: 1198092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the rates of enzymatic, protein and model compound reactions: the importance of diffusion control.
    Dunford HB; Hasinoff BB
    J Inorg Biochem; 1986; 28(2-3):263-9. PubMed ID: 3027256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why do many Michaelian enzymes exhibit an equilibrium constant close to unity for the interconversion of enzyme-bound substrate and product?
    Pettersson G
    Eur J Biochem; 1991 Feb; 195(3):663-70. PubMed ID: 1999189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two rules of enzyme kinetics for reversible Michaelis-Menten mechanisms.
    Keleti T
    FEBS Lett; 1986 Nov; 208(1):109-12. PubMed ID: 3770204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General mathematical formula for near equilibrium relaxation kinetics of basic enzyme reactions and its applications to find conformational selection steps.
    Egawa T; Callender R
    Math Biosci; 2019 Jul; 313():61-70. PubMed ID: 30935841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.